Address: Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V.Lomonosov, office 1425

Phone: +7 (8182) 21-61-18
E-mail: forest@narfu.ru
http://lesnoizhurnal.ru/en/

Lesnoy Zhurnal

Dynamic Behavior of Liquid Flow Rate from Nozzles in Jet Scrubbers of Pulp Production

Версия для печати

S.V. Aniskin, V.S. Kurov

Complete text of the article:

Download article (pdf, 1MB )

UDС

66.021.3.001.57:532.529

Abstract

It is shown that the modern development of pulp production technology is associated with the development of gas-liquid systems equipment. Such equipment provides the main technological processes of pulp cooking and regeneration of chemical reagents. Furthermore, this equipment, designed to recover chemical reagents and reduce their emissions into the environment, is part of the technological process. The use of scrubbers in pulp production has an advantage over many other industries, since it uses a closed liquor regeneration cycle. Currently, studies of the processes occurring in scrubbers of different types are becoming more numerous and fundamental. This paper is devoted to the development of jet scrubbers. These devices have a number of properties that do not have scrubbers of other types. They do not create resistance to the gas flow in the flue; they have a gravitational property due to ejection. Only jet scrubbers create the necessary conditions for the stability of the gas flow and have a jet effect that allows to significantly increase the efficiency of emissions cleaning. To implement the jet effect and intensify the technological equipment operation it is required to describe transfer processes in jet scrubbers with regard to polydisperse structure of drop flow and features of liquid splitting up into drops by centrifugal-jet nozzles. Scientific works devoted to the problem of realization of the jet effect showed the need to study the dynamics of liquid splitting in centrifugal-jet nozzles, which create a drop-filled jet with a large opening angle. The research purpose is to study the speed of the initial movement of drops in the area immediately after the splitting section of the continuous jet of liquid flowing from the nozzle. A photographic technique with two spark lamps was used for the experiment. At the same time, the distribution of irrigation density was controlled. The results of measuring the distributions of absolute speed of drops and irrigation density were compared with each other and the function of liquid speed distribution in the cross section of the gas-liquid jet of the jet scrubber was determined. Based on the obtained data, a theoretical model was developed to determine the initial speed of drops of centrifugal jet nozzles, an indicator required for the development of new jet scrubbers. The results can be applied to improve the technological processes of pulp production.

Authors

Sergei V. Aniskin, Doctor of Engineering, Prof.;
ORCID: https://orcid.org/0000-0001-8819-381X
Victor S. Kurov, Doctor of Engineering, Prof.;
ResearcherID: V-7289-2017, ORCID: https://orcid.org/0000-0002-7168-9613

Affiliation

Saint-Petersburg State University of Industrial Technologies and Design, ul. Ivana Chernykh, 4, Saint Petersburg, 198095, Russian Federation; e-mail: asv-47@mail.ru, vskurov18@mail.ru

Keywords

pulp production, gas-liquid equipment, jet scrubber, jet, drops

For citation

Aniskin S.V., Kurov V.S. Dynamic Behavior of Liquid Flow Rate from Nozzles in Jet Scrubbers of Pulp Production. Lesnoy Zhurnal [Russian Forestry Journal], 2021, no. 2, pp. 180–193. DOI: 10.37482/0536-1036-2021-2-180-193

References

  1. Aniskin S.V. Jet Effect of Gas Treating in a Uniflow Sprinkling Apparatus. Zhurnal Prikladnoi Khimii [Russian Journal of Applied Chemistry], 2010, vol. 83, no. 6, pp. 966–970. DOI: 10.1134/S1070427210060170
  2. Aniskin S.V. The Problem of Development of Gas-Liquid Systems in the Pulp and Paper Industry and the Possibility of Using Jet Scrubbers. Tsellyuloza, bumaga, karton, 2016, no. 1, pp. 56–62.
  3. Aniskin S.V. Collision of Droplets during Liquid Atomization in a Jet Scrubber. International Scientific Periodical Based on the Results of the International Scientific and Practical Conference MNPK-66 “New Science: From Idea to Result”. Sterlitamak, AMI Publ., 2016, no. 2-3, pp. 152–155.
  4. Aniskin S.V., Kurov V.S. The Study of Hydrogen Sulfide Desorption Conditions during the Fragmentation of the Liquid by Centrifugal-Jet Nozzle. Vestnik Sankt-Peterburgskogo gosudarstvennogo universiteta tekhnologii i dizayna. Seriya 1 [Vestnik of St. Petersburg State University of Technology and Design. Series 1. Natural and technical science], 2018, no. 4, pp. 55–60.
  5. Bratchikov G.G. Purification of Gas Emissions in the Pulp and Paper Industry. Moscow, Lesnaya promyshlennost’ Publ., 1989. 255 p.
  6. Galustov V.S. Direct-Flow Spraying Apparatuses in Heat Power Engineering. Moscow, Energoatomizdat Publ., 1989. 240 p.
  7. Galustov V.S., Aniskin S.V., Mikhaylov E.A. Spraying Devices with a Filled Flare for Irrigation of Heat and Mass Transfer Apparatuses. Overview Information. Series KhM-1. Moscow, Khimiya Publ., 1984. 33 p.
  8. Gusakova M.A., Tsyganov S.P., Miskevich I.V., Lichutina T.F. Ecological Assessment of Pulp and Paper Production at Mondi Syktyvkar. Tsellyuloza. Bumaga. Karton, 2008, no. 7, pp. 70–75.
  9. Leonchik B.I., Mayakin V.P. Measurements in Dispersed Flows. Moscow, Energiya Publ., 1971. 248 p.
  10. Lichutina T.F., Gusakova M.A., Vishnyakova A.P. Assessment of Real State of Gas Emissions into the Atmosphere at the Pulp and Paper Industry Enterprises of the North-West of Russia in Accordance with EU Standards. Tsellyuloza. Bumaga. Karton, 2009, no. 3, pp. 69–74.
  11. The Best Existing Technologies in the Pulp and Paper Industry. Saint Petersburg, Ekologiya i biznes Publ., 2004. 509 p.
  12. Pazhi D.G., Galustov V.S. Fundamentals of Liquid Spraying Techniques. Moscow, Khimiya Publ., 1984. 254 p.
  13. Aniskin S.V., Zaporozhets A.G. Foam Mass Exchange Apparatus. Patent RF, no. RU 2688761 C1, 2019.
  14. Pen R.Z. Pulp Technology: In 2 Vol. Vol. 1. Sulphate Pulp Production. Krasnoyarsk, SibSAU Publ., 2000. 236 p.
  15. Protod’yakonova O.I., Aniskin S.V., Kadashevich Y.I. Effect of Polydisperse Drop Composition on Hydrodynamics of Gas-Fluid Jet. Zhurnal Prikladnoi Khimii [Russian Journal of Applied Chemistry], 2001, vol. 74, no. 12, pp. 1994–2000. DOI: 10.1023/A:1015546807859
  16. Ramm V.M. Absorption of Gases. Moscow, Khimiya Publ., 1976. 655 p.
  17. Sittig M. Pulp and Paper Manufacture: Energy Conservation and Pollution Prevention. Translated from English. Moscow, Lesnaya Promyshlennost’ Publ., 1977. 280 p.
  18. Technology of Pulp and Paper Production: In 3 Vol. Vol. 1, Part 1. Wood Raw Materials and Production of Semi-Finished Products. Saint Petersburg, LTA Publ., 2002. 424 p.
  19. Torf A.I., Prokhorov B.V., Pasechnik S.P., Maksimov V.F. Wet Dust Collection in Sulphate Pulp Production. Moscow, VNIPIEIlesprom Publ., 1980, vol. 7, p. 32.
  20. Uzhov V.N., Val’dberg A.Yu. Purification of Gases with Wet Filters. Moscow, Khimiya Publ., 1975. 216 p.
  21. Federal Law “On Environmental Protection” Dated on January 1, 2002 No. 7-FZ.
  22. Shirokov S.N., Ermakov A.V. The Current Approach to Designing Gas-Cleaning Equipment. Khimicheskoe i Neftegazovoe Mashinostroenie [Chemical and Petroleum Engineering], 2005, no. 1, pp. 37–39. DOI: 10.1007/s10556-005-0054-1
  23. Agrawal K.S. Performance of Venturi Scrubber. International Journal of Engineering Research and Development, 2013, vol. 7, iss. 11, pp. 53–69.
  24. Al-Sarkhi A., Hanratty T.J. Effect of Pipe Diameter on the Drop Size in a Horizontal Annular Gas–Liquid Flow. International Journal of Multiphase Flow, 2002, vol. 28, iss. 10, pp. 1617–1629. DOI: 10.1016/S0301-9322(02)00048-4
  25. Beji T., Zadeh S.E., Maragkos G., Merci B. Influence of the Particle Injection Rate, Droplet Size Distribution and Volume Flux Angular Distribution on the Results and Computational Time of Water Spray CFD Simulations. Fire Safety Journal, 2017, vol. 91, pp. 586–595. DOI: 10.1016/j.firesaf.2017.03.040
  26. Breton K., Fleck B.A., Nobes D.S. A Parametric Study of a Flash Atomized Water Jet Using a Phase Doppler Particle Analyzer. Atomization and Sprays, 2013, vol. 23, iss. 9, pp. 799–817. DOI: 10.1615/AtomizSpr.2013007728
  27. Costa M.A.M., Ribeiro A.P.R.A., Tognetti É.R., Aguiar M.L., Gonçalves J.A.S., Coury J.R. Performance of a Venturi Scrubber in the Removal of Fine Powder from a Confined Gas Stream. Materials Research, 2005, vol. 8, no. 2, pp. 177–179. DOI: 10.1590/S1516-14392005000200016
  28. Das S.K., Biswas M.N. Studies on Ejector-Venturi Fume Scrubber. Chemical Engineering Journal, 2006, vol. 119, iss. 2-3, pp. 153–160. DOI: 10.1016/j.cej.2006.03.019
  29. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. Official Journal of the European Union, 2008, pp. 1–44.
  30. Fathikalajahi J., Taheri M., Talaie M.R. Theoretical Study of Nonuniform Droplets Concentration Distribution on Venturi Scrubber Performance. Particulate Science and Technology, 1996, vol. 14, iss. 2, pp. 153–164. DOI: 10.1080/02726359608906691
  31. Fore L.B., Ibrahim B.B., Beus S.G. Visual Measurements of Droplet Size in Gas-Liquid Annular Flow. International Journal of Multiphase Flow, 2002, vol. 28, iss. 12, pp. 1895–1910. DOI: 10.1016/S0301-9322(02)00121-0
  32. Gamisans X., Sarrà M., Lafuente F.J. Fluid Flow and Pumping Efficiency in an Ejector-Venturi Scrubber. Chemical Engineering and Processing: Process Intensification, 2004, vol. 43, iss. 2, pp. 127–136. DOI: 10.1016/S0255-2701(03)00104-1
  33. Gamisans X., Sarrà M., Lafuente F.J., Azzopardi B.J. The Hydrodynamics of Ejector-Venturi Scrubbers and Their Modelling by an Annular Flow/Boundary Layer Model. Chemical Engineering Science, 2002, vol. 57, iss. 14, pp. 2707–2718. DOI: 10.1016/S0009-2509(02)00171-9
  34. Gonçalves J.A.S., Costa M.A.M., Aguiar M.L., Coury J.R. Atomization of Liquids in a Pease-Anthony Venturi Scrubber: Part II. Droplet Dispersion. Journal of Hazardous Materials, 2004, vol. 116, iss. 1-2, pp. 147–157. DOI: 10.1016/j.jhazmat.2004.08.030
  35. Guerra V.G., Gonçalves J.A.S., Coury J.R. Experimental Investigation on the Effect of Liquid Injection by Multiple Orifces in the Formation of Droplets in a Venturi Scrubber. Journal of Hazardous Materials, 2008, vol. 16, iss. 1, pp. 351–359. DOI: 10.1016/j.jhazmat.2008.03.101
  36. Han Z., Liu B., Yang S., Pan X., Yan Z. NOX Removal from Simulated Marine Exhaust Gas by Wet Scrubbing Using NaClO Solution. Journal of Chemistry, 2017, vol. 2017, art. 9340856. DOI: 10.1155/2017/9340856
  37. Harry-Ngei N., Ubong I., Ede P.N. A Review of the Scrubber as a Tool for the Control of Flue Gas Emissions in a Combustion System. European Journal of Engineering Research and Science, 2019, vol. 4, no. 11, рр. 1–4. DOI: 10.24018/ejers.2019.4.11.1561
  38. Jet scrubbers. Official Website of the GEA Group Aktiengesellschaft. 2020. Available at: https://www.gea.com/en/products/emission-control/gas-scrubbers/jet-scrubbers.jsp (accessed 05.12.20).
  39. Kandar T.K., Vhora S.F., Iyer K., Prabhu S.V. Experimental Investigation of the 700 MWe Containment Spray System Spray Nozzles/System. Atomization and Sprays, 2017, vol. 27, iss. 8, pp. 665–690. DOI: 10.1615/AtomizSpr.2017019352
  40. Pak S.I., Chang K.S. Performance Estimation of a Venturi Scrubber Using a Computational Model for Capturing Dust Particles with Liquid Spray. Journal of Hazardous Materials, 2006, vol. 138, iss. 3, pp. 560–573. DOI: 10.1016/j.jhazmat.2006.05.105
  41. Puentes N.A.G., Zoccal J.V.M., Guerra V.G., Coury J.R., Gonçalves J.A.S. Use of a Short Duration Electronic Flash in the Study of the Trajectory of Liquid Jet in a Pease-Anthony Venturi Scrubber. Materials Science Forum, 2010, vol. 660-661, pp. 537–542. DOI: 10.4028/www.scientific.net/MSF.660-661.537
  42. Shilyaev M.I., Khromova E.M. Modeling of Heat and Mass Transfer and Absorption-Condensation Dust and Gas Cleaning in Jet Scrubbers. Mass Transfer – Advances in Sustainable Energy and Environment Oriented Numerical Modeling. Ed. by H. Nakajima. Rijeka, Croatia, InTech, 2013, pp. 163–194. DOI: 10.5772/53094
  43. Srilatha C., Morab V.V., Mundada T.P., Patwardhan A.W. Relation between Hydrodynamics and Drop Size Distributions in Pump–Mix Mixer. Chemical Engineering Science, 2010, vol. 65, iss. 11, pp. 3409–3426. DOI: 10.1016/j.ces.2010.02.035
  44. Sundararaj S., Selladurai V. Flow and Mixing Pattern of Transverse Turbulent Jet in Venturi-Jet Mixer. Arabian Journal for Science and Engineering, 2013, vol. 38, no. 12, pp. 3563–3573. DOI: 10.1007/s13369-013-0643-9
  45. Tran T.A. Research of the Scrubber Systems to Clean Marine Diesel Engine Exhaust Gases on Ships. Journal of Marine Science: Research & Development, 2017, vol. 7, iss. 6, art. 243. DOI: 10.4172/2155-9910.1000243
  46. Yoon S.S. Droplet Distribution at the Liquid Core of a Turbulent Spray. Physics of Fluids, 2005, vol. 17, iss. 3, art. 035103. DOI: 10.1063/1.1852577

Dynamic Behavior of Liquid Flow Rate from Nozzles in Jet Scrubbers of Pulp Production

 

Make a Submission


ADP_cert_2024.png

Lesnoy Zhurnal (Russian Forestry Journal) was awarded the "Seal of Recognition for Active Data Provider of the Year 2024"

INDEXED IN: 


DOAJ_logo-colour.png

logotype.png

Логотип.png