Почтовый адрес: САФУ, Редакция «Лесной журнал», наб. Северной Двины, 17, г. Архангельск, Россия, 163002, ауд. 1425

Тел.: 8(8182) 21-61-18
Сайт: http://lesnoizhurnal.ru/ 
e-mail: forest@narfu.ru

RussianEnglish



архив

Анализ термогравиметрических и кинетических данных различных видов древесного биотоплива Северо-западного региона Российской федерации

Версия для печати

П.А. Марьяндышев, А.А. Чернов, В.К. Любов

Рубрика: Химическая переработка древесины

Скачать статью (pdf, 1.3MB )

УДК

541.124

DOI:

10.17238/issn0536-1036.2016.1.167

Аннотация

Биотопливо является самым древним видом топлива, однако проблема его эффективного энергетического использования до сих пор остается актуальной во всем мире. Северо-Западный регион обладает огромными запасами древесины, поэтому для него наиболее важным является максимально эффективно использовать древесную биомассу в различных направлениях хозяйственной деятельности. Вовлечение в топливно-энергетический баланс древесного биотоплива позволяет уменьшить негативное влияние объектов энергетики на окружающую среду и сохранить потенциал невозобновляемых видов топлива для будущих поколений. В последнее время особый интерес вызывают исследования, направленные на изучение эффективности использования древесного биотоплива. Целью работы являлось исследование процесса термического разложения древесного биотоплива различных пород и определение кинетических характеристик процесса на основе термогравиметрических данных. Биотопливо разных пород древесины было собрано в Архангельской области. Исследования проводились как в инертной, так и окислительной средах при изменении температуры от 20 до 1300 °С и скорости нагрева 5, 10 и 20 °С/мин. Кинетический анализ был проведен в рамках термического разложения холоцеллюлозы различных видов биотоплива при использовании термогравиметрических данных, основанных на моделях Фридмана и Озава–Флинн–Уолла. Проведенные эксперименты позволили определить температурные диапазоны и скорость изменения массы древесного биотоплива при выходе летучих веществ, а также кинетические параметры, характеризующие этот процесс. Результаты выполненных исследований следует использовать при расчетах процессов и установок, связанных с термической подготовкой, энерготехнологической переработкой или сжиганием различных видов биотоплива.

Сведения об авторах

© П.А. Марьяндышев, инж.

А.А. Чернов, асп.

В.К. Любов, д-р техн. наук, проф.

Северный (Арктический) федеральный университет имени М.В. Ломоносова, наб. Северной Двины, 17, г. Архангельск, Россия, 163002; e-mail: p.marjyandishev@narfu.ru, chernov.ksandr@gmail.com, vk.lubov@mail.ru

Ключевые слова

древесная биомасса, термический анализ, термогравиметрический анализ, синхронный термоанализатор, термический эффект, кинетика, энергия активации, предэкспоненциальный множитель

Литература

1. Любов В.К., Любова С.В. Повышение эффективности энергетического использования биотоплив: учеб. пособие. Архангельск: Изд-во САФУ, 2010. 496 с.

2. Режим доступа: http://www.netzsch-thermal-analysis.com/ru/produkty- reshenija/termogravimetricheskii-analiz/tg-449-f3-jupiter.html. 11.02. 2014).

3. Семенов Ю.П., Хиллринг Б., Парикка М., Штерн Т., Любов В.К. Лесная биоэнергетика. М.: МГУЛ, 2008. 348 с.

4. Синева С.И., Старых Р.В. Влияние экспериментальных факторов на результаты определения температур фазовых превращений методом термического анализа (обобщающая статья). СПб.: Ин-т «Гипроникель», 2009. 7 с.

5. Юрьев Ю.Л. Древесный уголь. Екатеринбург: Изд-во «Сократ», 2007. 184 с.

6. Biello D. The false promise of biofuels // Sci. Am. 2011. N 305. Р. 58–65.

7. Braga R.M., Melo D.M.A., Aquino F.M. Characterization and comparative study of pyrolysis kinetics of the rice husk and the elephant grass // J. of thermal analysis and calorimetry. 2013. N 11.

8. Doyle C.D. Kinetic analysis of thermogravimetric data // J. Appl. Polym. Sci. 1962. N 5. Р. 285–292.

9. Gonzalez J.F., Encinar J.M., Canito J.L., Sabio E., Chacon M. Pyrolisis of cherry stones: energy use of the different fractions and kinetic study // J. Anal. Appl. Pyrolis. 2003. N 57. Р. 65–190.

10. Guozhan J., Nowakowski D.J., Bridgwater A.V. A systematic study of the kinetics of lignin pyrolysis // Thermochim. Acta. 2010. N 498. Р.61–66.

11. Ishi H., Fukui K., Takeno K. Biomass gasification and methanol synthesis system // Proceeding of ICOPE-03. 2003.

12. Lili Li, Gang Wang, Shaoyu Wang, Song Qin. Thermogravimetric and kinetic analysis of energy crop Jerusalem artichoke using distributed activation energy model //
J. of thermal analysis and calorimetry. 2013. N 3.

13. Macedo C.P., Negrao C.A.B., Macedo L.G.M., Zamian J.R., Rocha Filho G.N., Costa C.E.F. Kinetic study of template removal of Al-MCM-41 synthesized at room temperature // J. of thermal analysis and calorimetry. 2013.

14. Matsumoto K., Takeno K., Ichinose T., Ishii H., Nishimura K. Development of a 2 ton/day test plant for total operation study of woody biomass gasification and liquid fuel synthesis // Proceeding of the 15th Euro biomass conference and exhibition. 2007. Р. 1945–1950.

15. Milne T.A., Agblevor F., Davis M., Deutch S., Johnson D. A review of the chemical composition of fast-pyrolysis oils from biomass // Developments in thermochemical biomass conversion. Vol. 1 / A.V. Bridgwater, D.G.V. Boocock, editor. London: Blackie A&P, 1997. P. 409–424.

16. Miura K. A new and simple method to estimate f(E) and k0 (E) in the distributed activation energy model from three sets of experimental data // Energy Fuel. 1995. N 9.
Р. 302–307.

17. Mui E.L.K., Cheung W.H., Lee V.K.C., McKay G. Kinetic study on bamboo pyrolysis // Eng. Chem. Res. 2008. N 47. Р. 5710–5722.

18. Ogi T., Kawamura A., Nakanashi M., Inoue S. Effects of woody biomass variety on gasification in an entrained gasifier // Proceedings of IAWPS2005. 2005. Vol. 2.
Р. 257–258.

19. Ogi T., Nakanashi M., Fukuda Y. Gasification of empty fruit bunch and bagasse using an entrained-flow mode reactor // J. Jpn. Inst. Energy. 2011. N 90. Р. 886–894.

20. Ogi T., Nakanashi M. Gasification of Japanese cedar (cryptomeria japonica) bark in an entrained gasifier // Renew Energy. 2006. N 1. Р. 1050–1054.

21. Ogi T., Nakanashi M., Inoue S. Gasification of biomass in a small-scale entrained gasifier: gasification of Japanese cedar and Italian ryegrass // Proceeding of the 8th Japan-China symposium on coal and C1 chemistry. 2003. Vol. 1. Р. 227–228.

22. Ogi T., Nakanashi M., Inoue S. Gasification of woody and herbaceous biomass in a small-scale entrained gasifier: comparison of Japanese cedar and Italian ryegrass // Science in thermal and chemical biomass conversion. 2005. Vol. 1. Р. 620–630.

23. Oliveira L.E., Giordani D.S., Paiva E.M. Kinetic and thermodynamic parameters of volatilization of biodiesel from babassu, palm oil and mineral diesel by thermogravimetric analysis (TG) // J. Therm. Anal. Calorimetry. 2013.

24. Pasa V.M.D., Carazza F., Otani C. Wood tar pitch: analysis and conceptual model of its structure // Developments in thermochemical biomass conversion / A.V. Bridgwater, D.G.V. Boocock, editor. London: Blackie A&P, 1997. Vol. 1. P. 448–461.

25. Poskrobko S., Krol D. Thermogravimetric research of dry decomposition // J. of thermal analysis and calorimetry. 2012. N 10.

26. Shen D.K., Gu S., Jin B.S., Fang M.X. Thermal degradation mechanisms of wood inert and oxidative environments using DAEM methods // Bioresource Technology. 2011.
N 102. Р. 2047–2052.

27. Souza M.J.B., Araujo A.S., Pedrosa A.M.G., Lima S.H., Fernande V.J.Jr. Kinetic parameters of surfactant remotion occluded in the pores of the AIMCM-41 nanostructured materials // Thermochim. Acta. 2006. N 443. Р. 183–188.

28. Vyazovkin S. A unified approach to kinetic processing of non-isothermal data //
J. Chem. Kinet. 1996. N 28. Р. 95–101.

29. Vyazovkin S., Burnham A.K., Criado J.M., Perez-Maqueda L.A., Popescu C., Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data// Thermochim. Acta. 2011. N 520. Р. 1–19.

30. Vyazovkin S., Wight C.A. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data // Thermochim. Acta. 1999. Р. 53–68; 340–341.

31. Wang G., Li W., Li B.Q., Chen H.K. TG study on pyrolysis of biomass and ist three components under syngas // Еnergy Fuel. 2008. N 87. Р. 552–558.

32. Wehlte S., Meier D., Moltran J., Faix O. The impact of wood preservatives on the flash pyrolisis of biomass // Developments in thermochemical biomass conversion. Vol. 1 / A.V. Bridgwater, D.G/B. Boocock. London: Blackie A&P, 1997. P. 206–219.

33. Williams A., Jones J.M., Ma L., Pourkashanian M. Pollutants from the combustion of solid biomass fuels // Progress in Energy and Combustion Science. 2012. N 38.
P. 113–137.

34. Zhengqi Li, Chunlong Liu, Zhichao Chen, Juan Qian, Wei Zhao, Qunyi Zhu. Analysis of coals and biomass pyrolysis using the distributed activation energy model // Bioresource Technology. 2013.

Поступила 05.11.15


UDC 541.124

DOI: 10.17238/issn0536-1036.2016.1.167

Thermogravimetric and Kinetic Data Analysis of Wood Biofuels in the North-Western Region of the Russian Federation

P.A. Mar'yandyshev, Engineer

A.A. Chernov, Postgraduate Student

V.K. Lyubov, Doctor of Engineering Sciences, Professor

Northern (Arctic) Federal University named after M.V. Lomonosov, Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation; е-mail: p.marjyandishev@narfu.ru, chernov.ksandr@gmail.com, vk.lubov@mail.ru

Biofuel is the most ancient type of fuel, but the problem of its efficient energetical use remains relevant throughout the world. The northwest region has the huge reserves of wood, so it is very important to maximize the use of woody biomass in various areas of economic activity. Involvement of biofuels in the fuel and energy balance reduces the negative impact of the energy facilities on the environment and keeps the potential of non-renewable fuels for the future generations. Recently, the studies of the efficiency of wood biofuel usage are of very special interest. The purpose of the paper is to study the thermal decomposition of wood biofuels and to determine kinetic characteristics of the process on the basis of thermogravimetric data. Biofuels were collected in the Arkhangelsk region. The studies were carried out in the inert and oxidizing environments at the temperature range from 20…1300 °C and a heating rate of 5, 10 and 20 °C/min. Kinetic analysis was conducted in the framework of thermal decomposition of holocellulose of biofuels using the thermogravimetric data based on the Friedman and Ozawa-Flynn-Wall models. The experiments allowed us to determine the temperature range and the rate of change in weight of wood biofuel at volatile yield and kinetic parameters characterizing this process. The results of the studies should be used in the calculation of processes and systems of thermal treating, energy-technological fuel reprocessing or multifuel burning.

Keywords: wood biomass, thermal analysis, thermogravimetric analysis, synchronous thermal analyzer, thermal effect, kinetics, activation energy, preexponential factor.

REFERENCES

1. Lyubov V.K., Lyubova S.V. Povyshenie effektivnosti energeticheskogo ispol'zovaniya biotopliv [Biofuels Utilization Efficiency Improvement]. Arkhangelsk, 2010. 496 p.

2. Fascinating Flexibility in Thermal Analysis. Available at: http://www.
netzsch-thermal-analysis.com/ru/produkty-reshenija/termogravimetricheskii-analiz/tg-449-f3-jupiter.html (accessed 11.02. 2014).

3. Semenov Yu.P., Khillring B., Parikka M., Shtern T., Lyubov V.K. Lesnaya bioenergetika [Forest Bioenergy]. Moscow, 2008. 348 p.

4. Sineva S.I., Starykh R.V. Vliyanie eksperimental'nykh faktorov na rezul'taty opredeleniya temperatur fazovykh prevrashcheniy metodom termicheskogo analiza [Influence of the Experimental Factors on the Results of the Temperature Definition of Phase Conversion by Thermal Analysis]. Saint Petersburg, 2009. 7 p.

5. Yur'ev Yu.L. Drevesnyy ugol' [Charcoal]. Yekaterinburg, 2007. 184 p.

6. Biello D. The False Promise of Biofuels. Sci. Am., 2011, no. 305, pp. 58–65.

7. Braga M.R., Melo M.A.D., Aquino M.F. Characterization and Comparative Study of Pyrolysis Kinetics of the Rice Husk and the Elephant Grass. J. Therm. Anal. Calorimetry, 2013, no. 11.

8. Doyle C.D. Kinetic Analysis of Thermogravimetric Data. J. Appl. Polym. Sci., 1961, vol. 5, pp. 285–292.

9. Gonzalez J.F., Encinar J.M., Canito J.L., Sabio E., Chacon M. Pyrolisis of Cherry Stones: Energy Use of the Different Fractions and Kinetic Study. J. Anal. Appl. Pyrolis., 2003, vol. 57, pp. 165–190.

10. Guozhan J., Nowakowski D.J., Bridgwater A.V. A Systematic Study of the Kinetics of Lignin Pyrolysis. Thermochim. Acta, 2010, vol. 498, pp. 61–66.

11. Ishi H., Fukui K., Takeno K. Biomass Gasification and Methanol Synthesis System. Proc. of ICOPE-03, 2003.

12. Lili Li, Gang Wang, Shaoyu Wang, Song Qin. Thermogravimetric and Kinetic Analysis of Energy Crop Jerusalem Artichoke Using Distributed Activation Energy Model. J. Therm. Anal. Calorimetry, 2013, no. 3.

13. Macedo C.P., Negrao C.A.B., Macedo L.G.M., Zamian J.R., Rocha Filho G.N., Costa C.E.F. Kinetic Study of Template Removal of Al-MCM-41 Synthesized at Room Temperature. J. Therm. Anal. Calorimetry, 2013. doi: 10.1007/s10973-013-3267-0.

14. Matsumoto K., Takeno K., Ichinose T., Ishii H., Nishimura K. Development of a 2 Ton/Day Test Plant for Total Operation Study of Woody Biomass Gasification and Liquid Fuel Synthesis. Proc. of the 15th Euro Biomass Conference and Exhibition, 2007, pp. 1945–1950.

15. Milne T.A., Agblevor F., Davis M., Deutch S., Johnson D. A Review of the Chemical Composition of Fast-Pyrolysis Oils from Biomass. Developments in Thermochemical Biomass Conversion. Ed. by Bridgwater A.V., Boocock D.G.B. London, 1997, vol. 1, pp. 409–424.

16. Miura K. A New and Simple Method to Estimate F(E) and K0 (E) in the Distributed Activation Energy Model from Three Sets of Experimental Data. Energy Fuel, 1995, vol. 9, pp. 302–307.

17. Mui E.L.K., Cheung W.H., Lee V.K.C., McKay G. Kinetic Study on Bamboo Pyrolysis. Ind. Eng. Chem. Res., 2008, vol. 47, pp. 5710–5722.

18. Ogi T., Kawamura A., Nakanashi M., Inoue S. Effects of Woody Biomass Variety on Gasification in an Entrained Gasifier. Proc. of IAWPS2005, 2005, vol. 2, pp. 257–258.

19. Ogi T., Nakanashi M., Fukuda Y. Gasification of Empty Fruit Bunch and Bagasse Using an Entrained-Flow Mode Reactor. J. Jpn. Inst. Energy, 2011, vol. 90, pp. 886–894.

20. Ogi T., Nakanashi M. Gasification of Japanese Cedar (Cryptomeria Japonica) Bark in an Entrained Gasifier. Renew Energy, 2006, vol. 1, pp. 1050–1054.

21. Ogi T., Nakanashi M., Inoue S. Gasification of Biomass in a Small-Scale Entrained Gasifier: Gasification of Japanese Cedar and Italian Ryegrass. Proc. of the 8th Japan-China Symposium on Coal and C1 Chemistry, 2003, vol. 1, pp. 227–228.

22. Ogi T., Nakanashi M., Inoue S. Gasification of Woody and Herbaceous Biomass in a Small-Scale Entrained Gasifier: Comparison of Japanese Cedar and Italian Ryegrass. Science in Thermal and Chemical Biomass Conversion, 2005, vol. 1, pp. 620–630.

23. Oliveira L.E., Giordani D.S., Paiva E.M. Kinetic and Thermodynamic Parameters of Volatilization of Biodiesel From Babassu, Palm Oil and Mineral Diesel by Thermogravimetric Analysis (TG). J. Therm. Anal. Calorimetry, 2013. doi 10.1007/s10973-011-2163-8.

24. Pasa V.M.D., Carazza F., Otani C. Wood Tar Pitch: Analysis and Conceptual Model of Its Structure. Developments in Thermochemical Biomass Conversion. Ed. by Bridgwater A.V., Boocock D.G.B. London, 1997, vol. 1, pp. 448–461.

25. Poskrobko S., Krol D. Thermogravimetric Research of Dry Decomposition.
J. Therm. Anal. Calorimetry, 2012, no. 10.

26. Shen D.K., Gu S., Jin B.S., Fang M.X. Thermal Degradation Mechanisms of Wood Inert and Oxidative Environments Using DAEM Methods. Bioresource Technology, 2011, vol. 102, pp. 2047–2052.

27. Souza M.J.B., Araujo A.S., Pedrosa A.M.G., Lima S.H., Fernande V.J. Kinetic Parameters of Surfactant Remotion Occluded in the Pores of the AIMCM-41 Nanostructured Materials. Thermochim. Acta, 2006, vol. 443, pp. 183–188.

28. Vyazovkin S. A Unified Approach to Kinetic Processing of Non-Isothermal Data. Int. J. Chem. Kinet., 1996, vol. 28, pp. 95–101.

29. Vyazovkin S., Burnham A.K., Criado J.M., Perez-Maqueda L.A., Popescu C., Sbirrazzuoli N. ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data. Thermochim. Acta, 2011, vol. 520, pp. 1–19.

30. Vyazovkin S., Wight C.A. Model-Free and Model-Fitting Approaches to Kinetic Analysis of Isothermal and Nonisothermal Data. Thermochim. Acta, 1999, vol. 340–341,
pp. 53–68.

31. Wang G., Li W., Li B.Q., Chen H.K. TG Study on Pyrolysis of Biomass and Its Three Components Under Syngas. Fuel, 2008, vol. 87, pp. 552–558.

32. Wehlte S., Meier D., Moltran J., Faix O. The Impact of Wood Preservatives on the Flash Pyrolisis of Biomass. Developments in Thermochemical Biomass Conversion.
Ed. by Bridgwater A.V., Boocock D.G.B. London, 1997, vol. 1, pp. 206–219.

33. Williams A., Jones J.M., Ma L., Pourkashanian M. Pollutants from the Combustion of Solid Biomass Fuels. Progress in Energy and Combustion Science, 2012, vol. 38,
pp. 113–137.

34. Zhengqi L., Chunlong L., Zhichao Ch., Juan Q., Wei Zh., Qunyi Zh. Analysis of Coals and Biomass Pyrolysis Using the Distributed Activation Energy Model. Bioresource Technology, 2013.

Received on November 05, 2015