дование сопряженности сезонного роста корневых систем и побегов у древесных растений и ее индификационное значение для практики лесного хозяйства // Роль науки в создании лесов будущего: Тез. докл. Всес. конф., Пушкино, 1980.— Л., 1981.— 87 с. [8]. Рахтеенко И. Н. Рост и взаимодействие корневых систем древесных растений.— Минск: АН БССР, 1963.— 254 с. [9]. Шинкаренко И. Б. Динамика роста и развития горизонтальных корней сосны обыкновенной // Зап. Харьков. с.-х. ин-та.— 1955.— Т. 10 (47).— С. 229—239. [10]. Я рославцев Г. Д. Сопряженность роста и регенерации корней с ростом побегов у некоторых средиземноморских пихт на Южном берегу Крыма // Бюл. Никитского ботан. сада.— 1982.— № 49.— С. 35—40. [11]. Я рославцев Г. Д., Кузнецов С. И. Сезонная изменчивость активности роста корней кедров // Бюл. Никитского ботан. сада.— 1982.— № 48.— С. 39—42.

УДК 536.244

ТЕПЛООБМЕН МАЛОРЯДНЫХ ПУЧКОВ ИЗ ТРУБ С ПОПЕРЕЧНЫМИ РЕБРАМИ

В. Б. КУНТЫШ, В. И. МЕЛЕХОВ, И. Г. РЯБОКОБЫЛЕНКО

Архангельский лесотехнический институт

Пучки из ребристых труб с числом рядов z = 1; 2 по направлению движения воздуха применяют в калориферах лесосушильных камер, в радиаторах тракторов, автомобилей и ряде других транспортных машин. Однако вопросы теплообмена и аэродинамического сопротивления в таких пучках, особенно однорядных [1, 4, 5, 7], исследованы недостаточно полно.

С учетом вышесказанного, нами экспериментально исследованы приведенная теплоотдача, аэродинамическое сопротивление и термическое контактное сопротивление (TKC) однорядных и двухрядного пучков, а также одиночной ребристой трубы в перпендикулярном потоке воздуха. Опыты проводили на биметаллических трубах с накатными однозаходными алюминиевыми ребрами, применяемых фирмой Хильдебранд (ФРГ) для нагрева агента сушки в лесосушильных камерах. Геометрические размеры ребер и трубы следующие: наружный диаметр ребра d = 64 мм; диаметр ребра у его основания $d_0 = 42$ мм; высота и шаг ребра соответственно h = 11 мм; S = 4 мм; толщина ребра у вершины $\Delta_1 = 0,55$ мм, у основания $\Delta_2 = 1,5$ мм; коэффициент оребрения трубы q = 8,04. Несущая труба с наружным диаметром $d_{\rm H} = d_{\rm K} = 39$ мм и толщиной стенки 2,5 мм выполнена из углеродистой стали.

щина реора у вершины 11 = 0.55 мм, у основания $L_2 = 1.5$ мм, коэффициент ореорения трубы $\varphi = 8,04$. Несущая труба с наружным диаметром $d_{\rm H} = d_{\rm K} = 39$ мм и толщиной стенки 2,5 мм выполнена из углеродистой стали. Исследованы: однорядные пучки *I*, *II*, *III* с поперечным шагом S_1 , соответственно равным 74; 80 и 100 мм (относительный поперечный шаг $\sigma_1 = S_1/d = 1,156;$ 1,25; 1,562), двухрядный пучок *IV* с шагом $S_1 = 133$ мм и продольным шагом $S_2 = 74$ мм ($\sigma_1 = 2,078$, относительный продольный шаг $\sigma_2 = S_2/d = 1,156$), а также одиночная труба *V*, установленная вертикально в центре рабочего участка сечением 400 × 400 мм разомкнутой аэродинамической трубы [2]. Теплоотдачу пучков *I—IV* изучали методом локального теплового моделирования,

Теплоотдачу пучков *I—IV* изучали методом локального теплового моделирования, при котором обогреваемую ребристую трубу-калориметр устанавливали в центре соответствующего ряда. Для измерения приведенных коэффициентов теплоотдачи и значений ТКС применен пароэлектрический калориметр. Методика измерений требуемых тепловых и гидродинамических параметров, аппаратурное и конструктивное оформление калориметрической трубы подробно описаны в работе [2]. Опытная программа состояла из двух частей: первая включала измерение приведенных коэффициентов теплоотдачи, вторая — определение ТКС биметаллической трубы. Величину термического контактного сопротнвления $R_{\rm K}$, (м² · K)/Вт, находили по формуле

$$R_{\rm K} = \Delta T_{\rm K} / q_{\rm K},\tag{1}$$

где $\Delta T_{\rm K}$ — температурный перепад на механическом контакте наружной поверхности несущей трубы с внутренней поверхностью ребристой оболочки;

q_к — плотность теплового потока через контактную зону, Вт/м².

Экспериментальные данные по теплоотдаче и аэродинамическому сопротивлению обрабатывали и представляли в числах подобия

$$\mathrm{Nu}_{i} = \frac{a_{i}d_{0}}{\lambda}; \ \mathrm{Nu}_{i}' = \frac{a_{i}d_{0}}{\lambda}; \ \mathrm{Re} = \frac{wd_{0}}{\nu}; \ \mathrm{Eu} = \frac{\Delta p}{\rho w^{2}}; \ \mathrm{Nu} = \frac{ad_{0}}{\lambda}; \ \mathrm{Nu}' = \frac{a'd_{0}}{\lambda}.$$

Здесь Nu_i, Nu_i, Nu, Nu' — числа Нуссельта, вычисленные по приведенному коэффициенту теплоотдачи *i*-го ряда без учета (*a*_l) и с учетом ТКС (*a*'), а также рассчитанные по средним приведенным коэффициентам теплоотдачи пучка без учета и с учетом ТКС;

115

Re — число Рейнольдса;

Еп — число Эйлера;

- скорость воздуха в узком сечении пучка, м/с;
- Δp перепад статического давления воздуха на пучке, Па;
- а, а' соответственно средние приведенные коэффициенты теплоотдачи пучка без учета и с учетом влияния ТКС;

 - λ коэффициент теплопроводности воздуха, Вт/(м · K);
- у коэффициент кинематической вязкости воздуха, м²/с.

За определяющую скорость потока принимали ее значение в узком сечении пучка, что вызвано стремлением к получению минимального расслоения опытных данных [1, 7], относящихся к различным пучкам с параметрическим изменением σ_1 . Физические константы воздуха принимали по его средней температуре в пучке. Для однорядных пучков I-III, а также одиночной трубы значения $\alpha_i = \alpha$, $\alpha'_i = \alpha'$ и соответственно $\operatorname{Nu}_I = \operatorname{Nu}$; $\operatorname{Nu}'_I = \operatorname{Nu}'$.

Рис. 1. Сечение оребренной трубы (a) и теплоотдача пучков (б); I, II, III, IV — номера пучков; V — одиночная труба: I — опытные точки; 2, 3 — опытные точки соответственно для 1- и 2-го рядов пучка IV; 4 — опытные точки с учетом $R_{\rm k}$

На рис. 1 в логарифмических координатах опытными точками представлены результаты исследования теплоотдачи, которые аппроксимированы уравнениями подобия степенного вида:

$$Nu_i = C_i \operatorname{Re}^{n_i}; \quad Nu'_i = C'_i \operatorname{Re}^{m_i}.$$
⁽²⁾

Для однорядных пучков и одиночной трубы $C_i = C$; $C'_i = C'$, $n_i = n$; $m_i = m$. Средняя теплоотдача компоновок I - V описана уравнениями

$$Nu = C \operatorname{Re}^{n}; \qquad Nu' = C' \operatorname{Re}^{m}. \tag{3}$$

Коэффициенты C_i , C'_i , C, C', n_i , m_i , n и m в уравнениях (2), (3) определяли способом выбранных точек и методом наименьших квадратов (МНК), реализованном на ЭВМ «Искра-226» [3]. Численные значения этих коэффициентов даны в табл. 1. При

1

т	3	б	π	18	71	•	
- I	a	U	л	11	ш	a	

	Численное значение коэффициента уравнений подобия для номера пучка, трубы						
Қоэффи- циент	: :			11			
	I 11	11		1-й ряд	2-й ряд		
$C_i \cdot 10^2 n_l \cdot 10$	6,47/6 7/7,12	6,27/7,3 7/6,86	7,15/6,2 7/7,16	7,53/6,7 7/7,15	5,3/4,9 7,5/7,59	4,54/3,8 7,6/7,82	
$\frac{C_i \cdot 10^2}{n_i' \cdot 10}$			7,93/7,6 6,8/6,84	8,52/7,2 6,8/7	5,94/5,9 7,3/7,31	5,05/4,5	
$ \begin{array}{c} C \cdot 10^2 \\ \varepsilon \cdot 10, \% \\ $	9,37/7,1 5,65/2,01 1,8/1,37 2,35/1,56	7,56/14,6 2,73/1,88 2,7/2,39 4,4/3,27	7,65/15,7 3,23/0,756 5,3/3,69 29,57/6,05	6,04/5 8,22/4,26 1,82/0,022 4,2/3 20,35/	5,72 9,25/0,017 2,3/0,00 ,1 7,1	7,28/	

* Пучок IV: n = 0.73/0.737; m = 0.71/0.715; $C' \cdot 10^2 = 6.8/6.57$.

расчете коэффициентов методом МНК доверительная вероятность *р* принята равной 0,99, для которой вычислены доверительный интервал *г* полученных уравнений и доверительный интервал для дисперсии оо (предельные большие значения).

В табл. І в числителе представлены значения параметров, полученные при обработке опытных данных способом выбранных точек, а в знаменателе — статистической обработкой МНК. Исключение составляют параметры є и σ_0 , в которых числитель характерен для Nu_i по уравнению (2), а знаменатель действителен для уравнения подобия аэродинамического сопротивления пучков *I*—*IV*. Численные значения є и σ_0 для Nu_i в уравнении (2), описывающего теплоотдачу труб *III*, *IV*, *V* с учетом ТКС, не превышают соответствующих величин в табл. 1 для этих пучков и поэтому отдельно не приведены. Сплошные линии на рис. 1 соответствуют уравнениям подобия с вычисленными коэффициентами способом выбранных точек.

Анализ результатов обработки опытов примененными способами показал, что числа Nu, вычисленные по предлагаемым различным уравнениям для одного и того же пучка, отличаются не более чем на 3 % в принятом диапазоне изменения Re. Несколько большее расхождение обнаружено при описании опытных данных по сопротивлению. Здесь разброс опытных точек относительно приближающей кривой более значителен, что связано с меньшей точностью измерения малых перепадов давления воздуха на пучках в области изменения Re = (4 ÷ 9) · 10³. Применение же ЭВМ для вычисления МНК коэффициентов пропорциональности сведено к формальным вычислениям без учета данного экспериментального факта и понимания физического явления для заданной средней относительной ошибки опытов по Еu, равной ± 3,5 %.

Теплоотдача пучков I-IV и трубы V монотонно увеличивается с ростом Re, причем возрастание логарифмически линейно. Но для плотного пучка I, характеризующегося малым σ_1 , наблюдается тенденция к криволинейному отклонению экспериментальных точек от аппроксимирующей прямой. Для шага $\sigma_1 \ll 1,25$ (пучки I, II) наблюдается хорошая связь между Nu и Re независимо от σ_1 . Теплоотдача в этих пучках не зависит от шага компоновки труб и (с отклонением $\pm 1,6$ %) обобщается уравнением

$$Nu = 0.0637 \, \mathrm{Re}^{0.7} \tag{4}$$

действительным в интервале числа $Re = (6-50) \cdot 10^3$.

Последующее увеличение σ_1 до 1,562 (пучок *III*) сопровождается интенсификацией средней теплоотдачи в 1,12 раза. Повышение интенсивности теплоотдачи в пучках с ростом $\sigma_1 > 1,25$ косвенно подтверждается и данными по теплоотдаче 1-го ряда пучка *IV* ($\sigma_1 = 2,078$), которые можно рассматривать в качестве адекватных теплоогдаче однорядного пучка [7] этой компоновки. Коэффициенты теплоотдачи увеличились по сравнению с пучком *III* на 6 %.

Теплоотдача 2-го ряда по отношению к 1-му в двухрядном пучке *IV* возросла на 4...18 % вследствие новышения турбулентности потока. Применение двухрядной компоновки вместо однорядной с $\sigma_1 = 2,078$ способствует увеличению средней теплоотдачи пучка на 1,5...9 %.

Для одиночной трубы характерны повышенные коэффициенты теплоотдачи, которые при Re = 5 · 10³ превосходят в 1,053—1,21 раза, а при Re = 23 · 10³ — в 1,15—1,32 раза теплоотдачу однорядных пучков *I—III* и приближаются к значению теплоотдачи 2-го ряда пучка *IV*.

Кривые теплоотдачи Nu' = f (Re), проведенные на рис. 1 штриховыми линиями, располагаются более полого по сравнению с зависимостями Nu = f (Re). Тангенс угла

наклона их, равный *т* или *m_l*, соответственно меньше *п* или *n_i* (табл. 1). При Re = = idem снижение Nu' по отношению к Nu -- количественное отражение влияния только ТКС (R_k). Интенсивность теплоотдачи уменьшается на 5...12 %. Различие в значениях т и п наглядно и однозначно объясняется проведенными сравнительными опытами. Изменение термического сопротивления теплоотдачи в биметаллических трубах сопровождается различным наклоном кривых теплоотдачи.

ности распределения теплоотдачи по поверхности [6], находились в диапазоне 0,963-0,995.

Рис. 2. Зависимость ТКС от плотности теплового потока: 1 --- опытные точки по формуле (1)

Для труб I-V значения кпд ребра η, рассчитанные с учетом « и неравномер-

Величину ТКС (*R*к, (м² · K)/Вт) труб I-V определяют в зависимости от плотности теплового потока qк, кВТ/м², по формуле

$$R_{\rm K} \cdot 10^4 = 14,89q_{\rm K}^{-0,59},\tag{5}$$

которой на рис. 2 соответствует сплошная линия. Средняя температура контакта $t_{\rm K} = 92,5...76,1$ °C.

Величина R_к при прочих постоянных условиях зависит прежде всего от совокупного механического состояния контактной зоны.

Выполненные микроскопические исследования обнаружили наличие вогнутостей в стенке алюминиевой ребристой оболочки под основанием ребер, заполненных воздухом. Ширина основания вогнутостей

составляет 1,5 мм, а максимальная высота — 0,0425 мм. Плотный контакт оболочки с несущей трубой имеет место по основаниям межреберных полостей. Наружная поверхность несущей трубы, шлифованная с шероховатостью, $R_z = 1,1$ мк.

Параметрическое увеличение «1 приводит к снижению аэродинамического сопро-тивления пучков *I—IV* (рис. 3), которое обобщается уравнением подобия:

$$Eu = A \operatorname{Re}^{-r}$$
.

En d-0,5 0,4 0,5 0,4 111 0,3 0,25 D,6 İγ 0,4 0,3 0,25 3 4 6 8 10 14 20 Rell

Результаты сравнения тепловой эффективности пучков из различных типов труб приведены в табл. 2.

Тепловое совершенство пучка (трубы) оценивается коэффициентом тепловой эф-фективности $\psi = (\alpha \varphi)_i / (\alpha \varphi)_{\Im T}$ при $N_0 = idem$ или $\psi' = (\alpha \varphi)_i / (\alpha \varphi)_{\Im T}$ при $N_0 \varphi =$ = idem; здесь $(\alpha \varphi)_{\Im T}$ теплоотдача эталонной поверхности, вычисленная по площади поверхности трубы с днаметром d_0 . В качестве эталонной поверхности принимали пучки 1, 2 (табл. 2) соответственно для компоновок *I*, *IV*. Из данных табл. 2 видно,

(6)

Значения А и г даны в табл. 1. Уравнения (2)-(4), действительны в интер-(6) вале $\text{Re} = (2,5 \div 50) \cdot 10^3$.

Значения тепловой эффективности и массовых характеристик исследованных пучков I, IV из труб Хильдебранд с трубами близкого диаметра, рекомендованными к применению [5] в калориферах сушильных камер, сопоставлены по методу В. М. Антуфьева. Параметры рекомендованных труб следующие: d = 69,5 мм; $d_0 =$ = 39,9 MM; h = 14,8 MM; S = 3MM; $\Delta = 0,6$; $\varphi = 14,67$. Hecyшая труба стальная d_н = 38 мм толщиной стенки 2,5 мм. Расход алюминия на оребрение 1 м трубы Хильдебранд составляет 1,91 кг/м, а масса стальной трубы - 2,24 кг/м, что больше, по сравнению с отечественными трубами, соответственно на 13 и 4 %. Удельная металлоемкость трубы Хильдебранд — 3,9 кг/м², отечественных — 2,1 кг/м².

Исследование пучков из труб

Но- мер пучка	S ₁ , мм	S ₂ , мм	$\frac{B\tau/(M^2\cdot K)}{N_0=6}$	џ́ Вт/м²	$\frac{\begin{array}{c} \alpha \varphi, \\ BT/(M^2 \cdot K) \end{array} \psi'}{N_0 \varphi = 60 \ BT/M^2}$		
I	74	$\frac{\overline{74}}{\overline{74}}$	350	0,55	365	0,63	
IV	133		400	0,6	430	0,71	
1*	74		635	1	580	1	
2*	133		665.	1	604	1	

Таблица 2

* 1, 2 — номера пучков из труб [5].

что интенсивность теплоотдачи пучков из труб Хильдебраид в 1,4—1,59 раза ниже по сравнению с перспективными трубами отечественного производства.

ЛИТЕРАТУРА

[1]. Жукаускас А. А., Улинскас Р. В., Зинявичюс Ф. В. Теплоотдача шахматных пучков оребренных труб, поперечно обтекаемых вязкой жидкостью // Тр. АН ЛитССР. Сер. Б.— 1986.— Т. З (154).— С. 85—93. [2]. Кунтыш В. Б., Пиир А. Э., Федотова Л. М. Исследование контактного термического сопротивления биметаллических оребренных труб АВО // Леси. журн.— 1980.— № 5.— С. 121—126. (Изв. высш. учеб. заведений). [3]. Применение ЭВМ «Искра-226» для статистической обработки эмпирических критериальных уравнений оребренных пучков / В. Б. Кунтыш, В. И. Мелехов, И. Г. Рябокобыленко и др. // Информ. листок Арханг. ЦНТИ.— 1987,— № 180—87.— 4 с. [4]. Средняя теплоотдача и гидравлическое сопротивление компактных пучков из круглых оребренных труб / Илгарубис В. С., Ермаков С. И., Улинскас Р. В. и др., АН ЛИТССР. Ин-т физ.-техн. проблем энергетики.— Каупас, 1984.— 22 с.— Ден. в ЛитНИИНТИ 16.1084, № 1311—84. [5]. Теплообмен и аэродинамическое сопротивление однорядных биметаллических калориферов для лесосущильных камер / В. Б. Кунтыш, В. И. Мелехов, Е. С. Богданов и др. // Деревообраб. пром-сть.— 1985.— № 9.— С. 7—9. [6]. Юдин В. Ф. Теплообмен поперечнооребренных труб.— Л.: Машиностроение, 1982.— 189 с. [7]. S рагго w Е. М., S а mi e F. Heat transfer and pressure drop results for one-and two-row arrays of finned tubes // Jnt J. Heat Mass. Transfer.— 1985.— № 12, vol. 28.— Р. 2247—2259.

УДК 630*812

КРАТКОВРЕМЕННАЯ ПРОЧНОСТЬ ДРЕВЕСИНЫ ПРИ КОНЦЕНТРАЦИИ НАПРЯЖЕНИЙ

Ю. М. ИВАНОВ, Ю. Ю. СЛАВИК ЦНИИ строительных конструкций

Задержка релаксации максимальных напряжений в области вынужденных высокоэластических (ввэл) деформаций, выражающаяся при изгибе в явлении парадокса [4, 7], должна наблюдаться, как мы предполагали [3], в виде задержанного притупления пиков и при концентрации напряжений. Явление парадокса [3, 7] состоит в отсутствии роста временного сопротивления $\sigma_{\rm Bp}$ изгибу при превышении некоторой скорости нагружения в машинном испытании древесины. Наглядно это обнаруживается на графике Ig $t - \sigma$, показывающем отклонение опытных точек 1 вниз от прямой 1 длительной прочности (рис. 1, показано стрелками), которая ссответствует медленному нагружению и длительной нагрузке (на рис. 1 t — время до разрушения, определяемое по продолжительности испытания t_1 с постоянной скоростью нагружения до момента разрушения [7]; σ разрушающое напряжение при непытаниях модлению возрастающей нагрузкой (точки 2) или постоянное напряжение при длительных испытаниях (точки 3); σ , % к σ_{max}). Известно, что превышение краевым напряжением предела вынужденной высоко-

Известно, что превышение краевым напряжением предела вынужденной высокоэластичности σ_{B3} древесины [5] сопровождается интенсивным развитием перед разрушением изгибаемого элемента нелинейных ввэл деформаций, скорость которых растет экспоненциально с напряжением. В крайних сжатых волокнах изгибаемого элемента скорость краевой деформации определяется упругим ядром на остальной части поперечного сечения, сдерживающим развитие ввэл деформаций, что вызывает релаксацию напряжений в этих волокнах (появление зачаточной складки разрушения в них определяет потерю несущей способности изгибаемого элемента). При испытаниях с повышенными скоростями нагружения создаются условия задержки развития