УДК 674.053

В.Г. Новоселов, А.И. Кузнецов

Новоселов Владимир Геннадьевич, родился в 1954 г., окончил в 1976 г. Уральский лесотехнический институт, кандидат технических наук, доцент, заведующий кафедрой станков и инструментов Уральского государственного лесотехнического университета. Имеет более 100 работ в области динамики и надежности деревообрабатывающих машин.

Кузнецов Алексей Иванович родился в 1981 г., окончил в 2003 г. Уральский государственный лесотехнический университет, аспирант кафедры станков и инструментов. Имеет 2 публикации в области совершенствования лесопильного оборудования.

ИССЛЕДОВАНИЕ МОДЕРНИЗИРОВАННОГО ПЛА-НЕТАРНОГО МЕХАНИЗМА РЕЗАНИЯ

В процессе кинематического и силового исследования модерни-

зированного планетарного механизма резания лесопильной рамы с полным уравновешиванием сил, действующих на фундамент, определены параметры гибкого звена – коронной шестерни преобразователя.

Ключевые слова: лесопильная рама, уравновешиваниие, планетарный механизм, зубчатый ремень, долговечность, ремонтопригодность.

Существенным недостатком лесопильных рам являются неуравновешенные силы инерции подвижных масс кривошипно-шатунного механизма, вызывающие вибрацию. Ограничение вибрации за счет массивного фундамента требует значительного объема и удорожания строительных работ, но не всегда оказывается эффективным. Этот недостаток устранен в бесшатунных планетарных механизмах лесопильных рам (РПМ–02-К, ЛРВ-2, РПМ–02-Т), где полностью уравновешены вертикальные и горизонтальные силы, действующие на фундамент. Кинематическая схема механизма резания приведена на рис.1.

Однако при смене скорости и направления движения пильной рамки происходит перекладка зазоров в зубчатых парах (первый существенный недостаток планетарного механизма). Вследствие этого возникает ударная нагрузка на зубья, приводящая к их постепенному разрушению и снижению долговечности механизма. Изготовление зубчатых венцов сателлита, а тем более коронной шестерни механизма с достаточными качественными параметрами в ус-

85

ловиях лесопромышленного или деревообрабатывающего производства является чрезвычайно сложной задачей. Таким образом, вторым существенным недостатком планетарного механизма является его низкая ремонтопригодность.

Снизить ударные нагрузки, увеличить ресурс и повысить ремонтопригодность данного механизма можно за счет его модернизации – использования упругого элемента в виде зубчатого ремня в качестве коронной шестерни [2]. Зубчато-ременные передачи соединяют в себе достоинства ременных и цепных при- Рис. 1. Кинематическая схема водов. Их применяют в широком диапазоне мощномеханизма резания стей (от 0,2 до 500,0 кВт), частот вращения (в высоконагруженных приводах до $6 \cdot 10^3$ мин⁻¹, в кинематических – до $18 \cdot 10^3$ мин⁻¹) и окружных скоростей (от 0,5 до 8,0 м/с); кпд передач составляет 95 ... 99 %. Этот механизм не требует смазки, обладает пониженными вибрационно-шумовыми характеристиками, более высокой долговечностью зубчатого венца сателлита. При износе ремень достаточно легко извлекают и заменяют на новый.

Для определения параметров модернизированного механизма было проведено его кинематическое и силовое исследование. Для этого найдены проекции перемещений, скоростей и ускорений характерных точек звеньев планетарного преобразователя на координатные оси в функции угла поворота водила ϕ_1 . Ввиду значительных маховых масс преобразователя неравномерностью вращения водила в первом приближении пренебрегли.

Для произвольной точки механизма определены проекции:

перемещения

$$Z_k \mathbf{\Phi}_1 = \sum_{i=1}^n \mathbf{\Phi}_i \cos \varphi_i; \qquad (1)$$

$$X_{k} \mathbf{\phi}_{1} = \sum_{i=1}^{n} \mathbf{\phi}_{i} \sin \varphi_{i}; \qquad (2)$$

скорости

$$V_{zk} \mathbf{\phi}_1 = -\omega_1 \sum_{i=1}^n \mathbf{q}_i \sin \varphi_i ; \qquad (3)$$

$$V_{xk} \mathbf{\Phi}_1 = \omega_1 \sum_{i=1}^n \mathbf{\Phi}_i \cos \varphi_i ; \qquad (4)$$

ускорения

$$a_{zk} \mathbf{\phi}_1 = -\omega_1^2 \sum_{i=1}^n \mathbf{q}_i \cos \varphi_i ; \qquad (5)$$

$$a_{xk} \mathbf{\phi}_1 = -\omega_1^2 \sum_{i=1}^n \mathbf{q}_i \sin \varphi_i, \qquad (6)$$

где ω_1 – угловая скорость водила;

ф1 – угол поворота соответствующего звена или его отрезка до рассматриваемой точки, отсчитываемый от вертикальной оси по часовой стрелке;

- *n* количество звеньев, от оси вращения водила до рассматриваемой точки;
- *l_i* длина звена или его отрезка входящего в кинематическую цепь.

В случае неравенства длин звеньев (CF > AC) пильная рамка совершает возвратно-качательное (плоско-параллельное) движение относительно точки F на угол θ , определяемый по формуле

$$\theta = -\arcsin(x_F/l_3). \tag{7}$$

Ввиду малости угла качания ($x_F << l_3$) можно приближенно рассчитать угловую скорость ω_3 и угловое ускорение ε_3 пильной рамки:

$$\omega_3 = -V_{xF}/l_3; \tag{8}$$

$$\varepsilon_3 = a_{xF}/l_3. \tag{9}$$

Для выбранных точек (оси кинематических пар и центры масс звеньев) соответствующие величины приведены в таблице.

Точка	Число	Угол поворота ф _i	Длина звена
	звеньев n		или отрезков <i>l</i> _i
C B F	1 1 2		$l_1 = AC$ $l_1 = AB$ $l_1 = AC; l_2 = CF$
D	2	$\phi_1; \phi_2 = \pi - \phi_1$	$l_1 = AC; \ l_2 = CD$
G	3	$\phi_1; \phi_2 = 2\pi - \phi_1;$	$l_1 = AC; \ l_2 = CF; \ l_3 = FG$
Н	3	$\begin{array}{c} \phi_3 = \theta \\ \phi_1; \ \phi_2 = 2\pi - \phi_1; \\ \phi_3 = \theta \end{array}$	$l_1 = AC; \ l_2 = CF; \ l_3 = FH$

Рис. 2. Силовой анализ механизма резания

Для нахождения реакций в кинематических парах разбиваем механизм на три структурные группы (рис. 2) и решаем для них системы уравнений кинетостатики. Для структурной группы пильная рамка-ползун получена система уравнений:

$$\sum F_{z} = 0; \quad F_{zF} + F_{xH}f + F_{pe3} + F_{zpu} - m_{p}g = 0;$$

$$\sum F_{x} = 0; \quad -F_{zF} + F_{xH} + F_{xpu} + F_{n} = 0;$$

$$\sum M_{f} = 0; \quad F_{xH}L_{pam} - \langle n_{p}g\sin\theta - F_{xpu}\cos\theta + F_{zpu}\sin\theta] L_{pam}/2 +$$

$$+ M_{pu} + \langle F_{pe3}\sin\theta - F_{n}\cos\theta] \langle n_{n} - Z_{F}] \cos\theta = 0,$$
(10)

где F_{zk} , F_{xk} , – проекции реакций в кинематических парах;

F_{zpu}, *F_{xpu}* – проекции силы инерции пильной рамки;

М_{ри} – момент сил инерции распределенной массы пильной рамки;

 F_{pe3}, F_n – силы резания и подачи, принятые по данным [3];

m_p, *J_p* – масса и момент инерции пильной рамки;

- *f* коэффициент трения ползунов о направляющие;
- *g* ускорение свободного падения;
- θ угол отклонения пильной рамки от вертикали;
- L_{рам} расстояние от шарнира крепления пильной рамки к сателлиту до верхних ползунов.

Силы и момент сил инерции пильной рамки определяем по формулам

$$F_{zpu} = -m_p a_{zG}(\varphi); \tag{11}$$

$$F_{xpu} = -m_p a_{xG}(\varphi); \tag{12}$$

$$M_{nu} = -J_n \varepsilon_3. \tag{13}$$

Для структурной группы сателлит–коронная шестерня система уравнений кинетостатики имеет вид:

$$\sum F_{z} = 0; \quad F_{tE} \left\{ \sin \varphi - \cos \varphi tg \alpha \right\} + F_{zC} - F_{zF} + F_{zu,car} - m_{car}g = 0;$$

$$\sum F_{x} = 0; \quad -F_{tE} \left\{ \sin \varphi tg \alpha - \cos \varphi \right\} + F_{xC} + F_{xF} + F_{xu,car} = 0;$$

$$\sum M_{f} = 0; \quad F_{tE}r + \langle F_{zF} \sin \varphi - F_{xF} \cos \varphi \rangle_{F} +$$

$$+ \langle F_{zu,car} - m_{car}g \rangle \sin \varphi \rangle + F_{xu,car} \cos \varphi \rangle_{D} = 0,$$
(14)

где

*m*_{сат} – масса сателлита;

*F*_{tE} – тангенциальная сила в зацеплении;

α – угол в зацеплении сателлита с зубчатым ремнем;

 l_D, l_F – расстояние от оси сателлита до соответствующих точек;

- *r* радиус делительной окружности сателлита;
- *F_{zk}, F_{xk}, проекции реакций в кинематических парах;*

 $F_{zu.cat}$, $F_{xu.cat}$ – проекции сил инерции сателлита,

$$F_{zu.cat} = a_{zD} m_{cat};$$
 $F_{xu.cat} = a_{xD} m_{cat}.$

Системы уравнений (10) и (14) решаем матричным способом:

$$x(\varphi) = a(\varphi)^{-1}c(\varphi),$$

где $x(\phi)$ – матрица-вектор неизвестных реакций;

а(ϕ) – матрица коэффициентов при неизвестных;

 $c(\phi)$ – матрица-вектор свободных членов уравнений.

Для структурной группы пильная рамка-ползун имеем

$$x \mathbf{\Phi} = \begin{bmatrix} F_{zF} \\ F_{xF} \\ F_{xH} \end{bmatrix}; \qquad a \mathbf{\Phi} = \begin{bmatrix} 1 & 0 & f \\ 0 & -1 & 1 \\ 0 & 0 & L_{pam} \end{bmatrix}; \qquad c \mathbf{\Phi} = \begin{bmatrix} m_p g - F_{pe3} - F_{zpu} \\ -F_{xpu} - F_{xF} \\ M_1 + M_2 \end{bmatrix}$$

Моменты от силы тяжести и инерции пильной рамки M_1 и моменты от внешних сил M_2 сгруппированы:

$$M_{1} = (m_{pg} \sin\theta - F_{xpu} \cos\theta + F_{zpu} \sin\theta) L_{\text{pam}} / 2 - M_{pu};$$
$$M_{2} = -(F_{\text{pes}} \sin\theta - F_{n} \cos\theta (Z_{n} - Z_{F}) / \cos\theta.$$

Для структурной группы сателлит-коронная шестерня

Рис. 3. График тангенциальной силы в зацеплении

$$x \mathbf{\Phi} = \begin{bmatrix} F_{tE} \\ F_{zC} \\ F_{xC} \end{bmatrix}; a \mathbf{\Phi} = \begin{bmatrix} \mathbf{\Phi} in \mathbf{\Phi} - \cos \mathbf{\Phi} tg \mathbf{A} & \mathbf{I} & \mathbf{0} \\ -\mathbf{\Phi} in \mathbf{\Phi} tg \mathbf{A} + \cos \mathbf{\Phi} & \mathbf{0} & \mathbf{0} \end{bmatrix}; c \mathbf{\Phi} = \begin{bmatrix} F_{zF} - F_{zucar} + m_{car}g \\ -F_{xF} - F_{xucar} \\ M_3 + M_4 \end{bmatrix}.$$

Моменты от реакции в шарнире $F(M_3)$ и моменты от силы тяжести и инерции сателлита (M_4) сгруппированы:

$$M_3 = -(F_{zF}\sin\varphi - F_{xF}\cos\varphi)l_F;$$

$$M_4 = -[(F - m_{car}g)\sin(\varphi) + F_{xu.car}\cos(\varphi)] l_D.$$

Для начального звена проекции реакции в опоре *A*, определенные непосредственно из уравнений кинетостатики, независимы:

$$\Sigma F_{z} = 0; \quad -F_{zBu} - F_{zC} - m_{\rm B}g + F_{zA} = 0; \tag{15}$$

$$\Sigma F_x = 0; \quad -F_{xBu} - F_{xC} + F_{xA} = 0, \tag{16}$$

где *F*_{zBu}, *F*_{xBu} – проекции центробежной силы сателлита;

 F_{zA} , F_{xA} – проекции реакции в опоре A;

*m*_в – масса водила.

Исследование производили на ПЭВМ в среде МАТНСАD. Результат расчета тангенциальной силы E_{tE} в зацеплении представлен на рис. 3, максимальное ее значение составило 6,566 кН.

Расчет параметров зубчатого ремня вели по стандартной методике [1] по двум вариантам: по максимальной тангенциальной силе $F_{tE} = 6,566$ кH; по мощности двигателя (проверочный расчет) N = 30 кBт.

На основании расчета принято для каждого преобразователя по три ремня типа XXL шириной 50,8 мм. Выполненный проверочный расчет давления на зубьях показал их достаточную прочность.

СПИСОК ЛИТЕРАТУРЫ

1. Дунаев П.Ф. Конструирование узлов и деталей машин / П.Ф. Дунаев, О.П. Леликов. – М.: Высш. шк., 2000. – 447 с.

2. Пат. RU 43211 U1 РФ МПК⁷ В 27 В 3/00. Планетарный механизм резания лесопильной рамы /В.Г. Новоселов, А.И. Кузнецов. – № 2004125332/22; заявлено 18.08.2004; опубл. 10.01.2005, Бюл. № 1. – 2 с.

2. Шабалин Л.А. Влияние траектории движения пил на производительность / Л.А. Шабалин, В.С. Белошейкин, А.П. Головачев, В.И. Смирнов // Деревообраб. пром-сть. – 1986. – № 1. – С. 4–6.

V.G. Novoselov, A.I. Kuznetsov Investigation of Modernized Planetary Cutting Mechanism

Parameters of the flexible link – the crown wheel of converter – have been determined in the process of kinematical and power research of the modernized planetary cutting mechanism of the log frame with complete balancing of forces affecting the basement.