Испытания проводили в дневное время при одинаковых или близких погодных условиях, без подсыпки и с подсыпкой песка при торможении. Тормозной путь опытного состава определяли от начальной точки торможения (момента перевода ручки крана машиниста в тормозное положение) до полной остановки. Диапазон начальных скоростей составлял от 5 до 45 км/ч с интервалом 5 км/ч. Торможения выполняли в трехкратной повторности для каждой скорости. В табл. 2 приведены средние арифметические значения тормозного пути.

Таблица 2

	Тормозной путь, м, для колодок					
Ско- рость, км/ч	чугунных	чугунно- капроновых	чугунно- капроновых гребневых			
5 10 15 20 25 30 35 40 45	2,5/2,05 9,1/6,82 11,2/10,07 15,9/13,75 25,5/25,00 52,2/46,12 64,0/57,00 91,0/82,00 118,4/107,07	5,1/3,73 6,8/5,91 11,1/10,34 19,0/15,13 27,1/22,85 38,1/30,23 50,5/43,27 75,1/67,03 92,3/80,25	1,90/1,40 2,05/1,55 8,70/7,16 14,10/10,34 20,20/16,06 31,10/27,92 46,70/36,52 64,20/50,03 88,40/71,98			

Примечание. В числителе — данные для торможения без подсыпки песка, в знаменателе — с подсыпкой.

Проведенные испытания позволили оценить эксплуатационные качества опытных тормозных колодок. У тепловозов ТУ4, ТУ7 и ТУ6А износ бандажей с гребневыми чугунно-капроновыми колодками был меньше, чем с чугунными. Тормозная эффективность экспериментальных колодок оказалась выше, чем у чугунных и чугунно-капроновых обычного профиля, соответственно на 45...50 и 10...15%.

Указанные преимущества обеспечивают повышение безопасности движения поездов и снижение эксплуатационных затрат на тормозное оборудование.

Поступила 4 января 1991 г.

УДК 630*375:65.011.46

УТОЧНЕНИЕ МЕТОДИКИ РАСЧЕТА. СМЕННОЙ ПРОИЗВОДИТЕЛЬНОСТИ ТРЕЛЕВОЧНОГО ТРАКТОРА

Г. А. ИВАНОВ

Московский лесотехнический институт

Мероприятия по модернизации трелевочного трактора предполагают оценку его производительности в типичных лесозаготовительных условиях.

Цель работы — исследовать возможность повышения производительности трелевочного трактора (на примере ТБ-1М) путем изменения передаточных чисел трансмиссии и увеличения коэффициента приспособляемости двигателя.

Сменную производительность $II_{\rm cm}$ трелевочного трактора с гидроманипулятором определяли по известной формуле

$$\Pi_{\rm cm} = \frac{(T - t_{\rm n.3}) \varphi W}{T_{\rm tt}},$$

где

T — время смены, с;

 $t_{\rm n.\,3}$ — время на подготовительные и заключительные работы, для тракторов с гидроманипулятором $t_{\rm n,\,3}=3000$ с;

ф - коэффициент использования рабочего времени смены, $\varphi = 0.9$:

W — средний объем пачки, м 3 ;

 $T_{\rm u}$ — продолжительность цикла, с. В соответствии с ОСТ 23.1.88—82 для тракторов с номинальным тяговым усилием до 40 кН включительно типичным является средний запас древесины на 1 га 150 м³, средний объем хлыста 0,4 м³. Трелевочные тракторы ТБ-1М работают в районах европейской части страны, а также Урала и Западной Сибири, где на равнинных и всхолмленных площадях произрастают мелкотоварные смешанные насаждения с

объемом хлыста 0,18...0,40 м³ [2, 4, 5, 8].

Трелевочный трактор ТБ-1 [4] собирает пачку объемом до 8 м³, в среднем 5...6 м³. В работе [7] отмечено, что закон распределения объемов пачек для трактора ТБ-1М близок к нормальному с математическим ожиданием 5,08 м³ и средним квадратичным отклонением 1,42 м3. Поэтому производительность определяли для хлыстов объемом 0.2 и 0.4 м³ при объеме пачки $4 \dots 5$, $5 \dots 6$ и 7 м³. Из формулы видно, что мероприятия по модернизации моторно-трансмиссионной установки (МТУ) влияют, при прочих равных условиях, только на один член — $T_{\rm u}$.

Продолжительность цикла работы трелевочного трактора с гидроманипулятором находили по формуле -

$$T_{\rm u} = T_{\rm p} + T_{\rm x} + T_{\rm h} + T_{\rm 0} + K_{\rm n} t_{\rm n, n}$$

где

 $T_{\rm p}$, $T_{\rm x}$ — продолжительность рабочего и холостого хода тракто-

 $T_{\rm H}$ — продолжительность сбора пачки, с;

 T_0 — продолжительность работы на погрузочной площадке, с; K_n — число переключений передач за один цикл трелевки;

 $t_{
m n.n}$ — продолжительность одного переключения передач, с.

При рассматриваемой модернизации МТУ трелевочного трактора в цикле изменяется только продолжительность рабочего и холостого ходов $T_{p(x)}$, с, которую определяют по формуле

$$T_{\rm p (x)} = S/v_{\rm cp},$$

где

S — среднее расстояние трелевки, м,

$$S = S_n + S_M$$

Здесь S_{n} — средняя длина пасечного волока, м; $S_{\rm m}$ — средняя длина магистрального волока, м.

На лесозаготовках среднее расстояние трелевки в зависимости от схемы и типа уса лесовозной дороги колеблется от 150 до 300 м [8]. Из [4] известно, что для любой схемы разработки делянок оно находится в пределах 200...400 м. При дифференцированном же его определении для гусеничных тракторов расстояние транспортирования по магистральному волоку составляет 50 ... 250 м, по пасечному 50 м [5]. Поэтому производительность определяли при средних расстояниях трелевки 100, 200 и 300 м.

Согласно методике [5] скорость линейно зависит от коэффициента приспособляемости двигателя $K_{\rm M}$. При одном значении $K_{\rm M}$ могут быть реализованы различные законы разбивки ряда передач, следовательно, и различные скорости, которые в конечном итоге влияют на производительность. В связи с этим методика [5] для определения скорости непригодна.

Рассмотрим другой подход, связанный с использованием вероятностных зависимостей. Суть предлагаемого метода сводится к следующему. Для анализируемой разбивки ряда передач строят график зависимости между моментом на карданном валу $M_{\kappa, \mathfrak{b}}$ (рис. 1) или касательной силой тяги P_{κ} (рис. 2) трактора на каждой из передач с частотой (вероятностью) их распределения $\widehat{f}(M_{\kappa, \mathfrak{b}})$ или $\widehat{f}(P_{\kappa})$. Значения частоты (вероятности) распределения взяты из [1]. Тогда при известной величине пачки по таблицам функции Лапласа находят вероятность движения трактора на конкретной передаче.

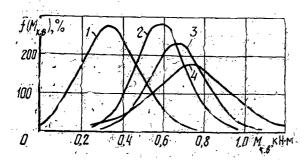


Рис. 1. Распределение крутящего момента на карданном валу: 1 — холостой ход; 2, 3, 4 — грузовой ход при объеме пачки хлыстов соответственно 4-5, 5-6 и 7 м 3

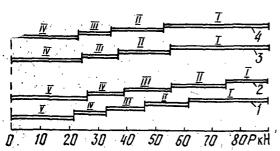


Рис. 2. Распределение касательной силы тяги на разных передачах: I — серийная коробка перемены передач, $K_{\rm M} = 1,15$; 2 — то же; $K_{\rm M} = 1,4$; 3 — модернизированная коробка перемены передач, $K_{\rm M} = 1,4$; 4 — то же, $K_{\rm M} = 1,5$. Римскими цифрами показаны номера передач

Среднюю скорость движения рабочего или холостого хода в силу независимости событий (работу трактора на k-й передаче) определяли по формуле

$$v_{\rm cp} = \sum_{k=1}^{m} P(v_k) v_k^{\rm cp},$$

где

 $P\left(v_{\mathbf{k}}\right)$ — вероятность движения трактора со скоростью v_{k}^{cp} ;

т — число рабочих передач;

 $v_k^{\rm cp}$ — средняя скорость на k-й передаче, м \cdot с $^{-1}$.

Средняя скорость на к-й передаче

$$v_k^{\rm cp} = \frac{\omega_k^{\rm cp} r_{\rm B.K}}{i_b},$$

где

 ω_{k}^{cp} — средняя угловая скорость вращения вала двигателя на k-й передаче, с $^{-1}$;

r_{в. к} — радиус ведущего колеса, м;

 i_k — передаточное число k-й передачи.

Средняя угловая скорость вращения вала двигателя на k-й передаче

$$\omega_{k}^{\rm cp} = \frac{10^{3} P_{\rm cp}}{M_{\rm AB}^{\rm cp}},$$

где

 $P_{\rm cp}$, $M_{\rm as}^{\rm cp}$ — средняя мощность, кВт, и средний момент двигателя, $H \cdot M$, на k-й передаче.

Средний момент двигателя на k-й передаче

$$\frac{M_{\text{AB}}^{\text{cp}}}{M_{\text{AB}}^{\text{cp}}} = \frac{P_{k}^{\text{min}} + P_{k}^{\text{max}}}{2i_{k}\eta_{\text{Mr}}} r_{\text{B. K}},$$

Ртіп, Ртах — минимальная и максимальная тяги на k-й передаче; η_{Mr} — механический кпд трактора, для ТБ-1М η_{Mr} =

= 0.885.

При работе двигателя с регулятором, когда $M_{\rm ab}^{\rm cp}$ меньше номинального момента двигателя $M_{\rm H}$, $H \cdot {\rm M}$, на k-й передаче и известен коэффициент крутизны скоростной характеристики двигателя $K_{\rm w}$, удобнее пользоваться формулой

$$\omega_k^{\rm cp} = \omega_{\rm x. x} - M_{\rm xB}^{\rm cp}/K_{\rm xx},$$

 $\omega_{\rm x,x}$ — угловая скорость холостого хода двигателя, с⁻¹.

По уточненной методике определяли сменную производительность трелевочного трактора ТБ-1М с различными вариантами коробки перемены передач (передаточные числа главной и бортовой передач в расчетах принимали, как у трактора ТБ-1М, равными 3,917 и 5,417 соответственно) и коэффициентами приспособляемости двигателя $K_{\rm M}$ в разных производственных условиях. Результаты расчета сведены в таблицу (в числителе — данные при объеме хлыста 0,2 м3; в знаменателе — 0.4 м^3).

Для базового варианта при использовании серийной коробки передач средняя загрузка двигателя возрастала пропорционально увеличению $K_{\rm M}$ от 1,15 до 1,4, т. е. в 1,217 раза. При анализе, если не оговорено специально, рассматривается расстояние трелевки 300 м, объем пач-

ки 5...6 м³, объем хлыста 0.4 м³.

Анализ данных таблицы показал, что увеличение коэффициента приспособляемости двигателя способствует повышению сменной производительности трелевочного трактора. Это объясняется тем, что на каждом шаге увеличения $K_{\rm M}$ внешняя скоростная характеристика двигателя по мощности приобретает все более пологий вид и площадь криволинейной фигуры, в пределах угловой скорости вала двигателя от ω_{min} до ω_{hom} и ординат от внешней характеристики до мощности, равой номинальной ± 3 %, становится все меньше [двигатель постоянной мощности (ДПМ) имеет высокое значение коэффициента приспособляемости и мощность, равную номинальной $\pm 3~\%$ в интервале угловой скорости $\omega_{\min} - \omega_{\text{ном}}$]. В свою очередь, чем меньше площадь этой фигуры, тем в большей мере двигатель осуществляет бесступенчатое автоматическое регулирование крутящего момента.

Производительность трактора с ДПМ и модернизированной трансмиссией меньше зависит от расстояния трелевки. Максимальный эффект от установки ДПМ достигается при одновременном изменении передаточных чисел коробки перемены передач. Это подтверждают и

работы [3, 6, 7].

Сравнение различных видов технологии трелевки древесины указывает на существенное (45 %) преимущество работы трелевочного трактора с валочной машиной. Это связано с уменьшением более чем в 2 раза затрат времени на сбор пачки по сравнению с ручной валкой.

Увеличение объема пачки от 4-5 до 7 м³ положительно сказывается на сменной производительности. Так, для серийного трактора и расстояния трелевки 100 м при ручной валке производительность возрастает на 3,9 %, при машинной — на 11,0 %; для модернизированного трак-

Способ валки	Вариант коробки передач	K _M	S, M	Сменная производительность, м³, при объеме пачки, м³					
				4-5	5-6	7			
Бензопилой	Серийная	1,15	100	69,97 106,30	71,30 109,10	$\frac{73,06}{110,60}$			
	• Модерни- зирован- •	1,4	200	64,32	66,04 97,30	68,54			
			300	59,50	61,50 87,80	$\frac{64,50}{92,20}$			
			100 -	$\frac{70,\overline{62}}{107,80}$	71,87	73,50 $111,70$			
i			200	65,35 95,97	67,02 99,45	69,25			
		1;4**	300	60,80 86,48	62,80 90,40	65,46 94,12			
			100 €	70,84 108,31	72,00 110,80	73,64			
			200	65,72 96,78	67,24 99,99	$\frac{69,50}{102,68}$			
		1,5	300	7 (-61,30 - 87,48	<u>63,10</u> 91,00	94,80			
			100	$\frac{70,94}{108,54}$	72,15	$\frac{73,72}{112,20}$			
			200	65,90 97,14	$\frac{67,50}{100,50}$	$\frac{69,64}{103,00}$			
			300	61,50 87,90	63,44 91,80	95,20			
впм	Серийная	1,15	100:	114,90	118,50	123,70 187,90			
	Модерни- зирован- ная		200	$\frac{100,40}{139,50}$	104,70	111,20			
		1,4	300	90,00	93,80 127,10	101,00			
			100	116,70	120,21	124,93			
			200	102,94	$\frac{107,25}{153,07}$	113,13			
,			300	$\frac{92,10}{124,00}$	$\frac{96,80}{132,64}$	103,36			
		1,4	100	117,30	120,57	125,33			
		-	200	103,90	107,81 154,23	$\frac{113,78}{161,00}$			
		1,5	300	93,24 126,04	97,50	104,20			
			100	117,55	$\frac{121,00}{182,73}$	125,57 192,30			
			200	104,30	108,50 155,67	114,20			
			300	93,73	98,36 135,60	$\frac{104,70}{147,27}$			

тора при $K_{\rm M}=1.5$ — соответственно 3,4 и 9,9 %. При трелевке на 300 м это увеличение составляет 9,9 и 16,6 % для серийного трактора, 8,3 и 16,0 % для трактора с ДПМ. Эти данные свидетельствуют о пре-имуществе тракторов с ДПМ и модернизированной трансмиссией, которые менее чувствительны к изменениям производственных условий.

Увеличение объема хлыста от 0,2 до 0,4 м³ обеспечивает рост сменной производительности, сопоставимый с изменением способа валки. При ручной валке производительность серийного трактора возрастает на 42,8 %, при машинной на 35,5 %; трактора с ДПМ при $K_{\rm M}=1,5$ —на 44,7 и 37,8 % соответственно. Это различие связано с временем на отдельные операции. Так как время трелевки и холостого хода в общем цикле меньше времени сбора пачки, а у трактора с ДПМ меньше, чем у серийного, то эффективность первого растет интенсивнее с увеличением объема хлыста.

Установка ДПМ с $K_{\text{м}} = 1,4$ при трелевке пачек объемом 5,5 . . . 7,0 м³ обеспечивает увеличение средней скорости грузового хода трак-

тора на 10...12 %, с $K_{\rm M} = 1.5$ — на 10,7...14,7 %.

В качестве альтернативы ДПМ рассмотрена модернизация трелевочного трактора, связанная с форсированием номинальной мощности его двигателя, в предположении, что рабочий диапазон тяговых усилий сохраняется, как у серийного трактора, трансмиссия остается без изменений, $K_{\rm M}=1,15$. Потребную номинальную мощность двигателя, обеспечивающую такую же сменную производительность, как и трактор с ДПМ, вычисляли методом прямого перебора. Расчеты показали, что трактор с ДПМ мощностью 70 кВт, коэффициентом приспособляемости двигателя 1,4 и модернизированной трансмиссией обеспечивает такую же сменную производительность, что и серийный трактор при номинальной мощности двигателя 81,3 кВт, т. е. на 16,15 % больше. При работе трактора с ДПМ мощностью 70 кВт и модернизированной трансмиссией, но при $K_{\rm M}=1,5$ для получения такого же результата потребуется мощность двигателя уже 84,6 кВт, т. е. на 21 % больше, чем у ДПМ.

Таким образом, уточненная методика расчета сменной производительности трелевочного трактора с использованием вероятностных зависимостей позволяет наиболее полно отразить, что использование ДПМ при одновременном изменении передаточных чисел в трансмиссии способствует максимальному росту сменной производительности при работе трелевочного трактора ТБ-1М в составе разных систем машин в различных производственных условиях.

СПИСОК ЛИТЕРАТУРЫ

[1]. Анисимов Г. М. Условия эксплуатации и нагруженности трансмиссии трелевочного трактора. — М.: Лесн. пром-сть, 1975. — 216 с. [2]. Егоров Л. И., Брейтер В. С. К обоснованию рейсовой нагрузки трелевочного трактора при работе с валочно-пакетирующей машиной // Проблемы исследования базовых промышленных тракторов. — Химки, 1977. — С. 17—23. — (Тр. / ЦНИИМЭ). [3]. Иванов Г. А. Повышение технического уровня трелевочного трактора // Лесн. пром-сть. — 1987. — № 9. — С. 28—29. [4]. Крашениников Е. М. Тракторы и автомобили для лесной промышленности и лесного хозяйства. — Петрозаводск: Карелия, 1977. — 128 с. [5]. Методика расчета технической производительности трелевочных тракторов. Отраслевая методика / ЧФ НАТИ. — М., 1983. — 40 с. [6]. Михайлов О. А. Улучшение тяговоскоростных свойств трелевочного трактора и снижение энергоемкости трелевки путем увеличения приспособляемости дизеля: Автореф. дис. ... канд. техн. наук. — Л., 1986. — 20 с. [7]. Швед А. И., Иватулин М. Т. Исследование влияния коэффициента запаса крутящего момента двигателя на производительность лесопромышленного трактора // Вопросы применения на тракторах двигателей постоянной мощности. — М., 1982. — С. 49—54. — (Тр. / НАТИ). [8]. Шелгунов Ю. В., Кутуков Г. М., Ильни г. П. Машины и оборудование лесозаготовок лесосплава и лесного хозяйства. — М.: Лесн. пром-сть, 1982. — 520 с.

УДК 621.86.063.2.001.24

ИЗМЕНЕНИЕ МАССЫ НА КРЮКЕ КРАНА-ЛЕСОПОГРУЗЧИКА БАШЕННОГО ТИПА ПРИ ВЫГРУЗКЕ КРУГЛЫХ ЛЕСОМАТЕРИАЛОВ ИЗ ГРЕЙФЕРА НА ВЕСУ

3. Д. ВТЮРИНА

Архангельский лесотехнический институт

Техническая возможность выгрузки круглых лесоматериалов из грейфера на весу тесно связана с влиянием этого процесса на устойчивость лесопогрузчика. Одним из основных факторов устойчивости является закономерность изменения массы груза на крюке.

иг и Продолжительность выгрузки бревен из грейфера на весу $t_{\rm u}$ складывается из времени от начала раскрытия челюстей до момента начала выгрузки бревен $t_{\rm h}$ и времени от выгрузки первого бревна до полного освобождения грейфера $t_{\rm h}$.

Масса на крюке лесопогрузчика $m_{\rm k}$ при выгрузке бревен изменяется от $m_6+m_{\rm r}$ до $m_{\rm r}$ (где m_6 — масса бревен, $m_{\rm r}$ — масса грейфера).

Установим зависимость изменения массы на крюке лесопогрузчика от времени выгрузки. Если при постоянном сечении отверстия грузозахватного органа масса сыпучих материалов уменьшается равномерно от m_0 до нуля в течение времени $t_{\rm B}$, то в любой момент t оставшаяся на крюке масса $m_{\rm K}$ может быть выражена по формуле

$$m_{\rm K} = m_0 (1 - t/t_{\rm B}) + m_{\rm r}$$

Продолжительность выгрузки при непрерывном раскрытии грейфера, очевидно, зависит от диаметра выгружаемых бревен. С его увеличением время от начала раскрытия грейфера до начала выгрузки возрастает, а продолжительность самого процесса опорожнения грейфера уменьшается, так как при той же массе бревен выгрузка происходит при большем раскрытии челюстей и, следовательно, с большей интенсивностью. Увеличение интенсивности выгрузки с ростом диаметра бревен выражается через показатель степени $2-d_{\rm c}/D$. Справедливость этого утверждения докажем сравнением теоретических и экспериментальных данных. Массу бревен в грейфере m_6 в любой момент времени $t \ge t_{\rm h}$ можно определить по формуле

$$m_6 = m_{6.0} \left[1 - \left(\frac{t - t_H}{t_B} \right)^{2 - d_c/D} \right],$$

где $m_{6.0}$ — масса бревен в грейфере до начала выгрузки;

D — диаметр грейфера (внутренний при сомкнутых челюстях); $d_{\rm c}$ — условный диаметр бревна в коре, $d_{\rm c}=d_{{\rm c...6}}+\Delta d$ ($d_{{\rm c...6}}$ — диаметр бревна без коры посередине длины; Δd — увеличение диаметра, учитывающее толщину коры и кривизну). Согласно ГОСТ 9463—88 для круглых хвойных лесоматериалов длиной 6 м приближенно можно принять $d_{\rm c}=d_{\rm b}+5$ см (где $d_{\rm b}$ — диаметр бревна в верхнем отрезе).

С учетом постоянной массы грейфера уравнение для массы на крюке лесопогрузчика в любой момент времени $t \geqslant t_{\text{н}}$ принимает вид