

Рис. 2. Зависимости и некоторые частные примеры определения направления магистрали.

а — зависимость комплексиого коэффициента A от срока действия магистрали B данной полосе лесного массива; $I - Q_{\Gamma} = 450$ тыс. м³; $2 - Q_{\Gamma} = 300$ тыс. м³; $3 - Q_{\Gamma} =$ = 150 тыс. м³; 6 — зависимость предельного значения координаты $x_{\rm пр}$ точки B от ширины полосы; $I - A = 1,75 \times$ $\times 10^{-5}$; $2 - A = 3,5 \cdot 10^{-5}$; $3 - A = 7,0 \cdot 10^{-5}$; 6 — пример назначения направления магистрали при ширине полос 6 max, определяемой по формуле (10); $z \sim$ возможный вариант направления магистрали ОАВ'С с ответвлением AD для лесных массивов со сложной конфигурацией границ и весьма неравномерным размещением запасов леса.

На рис. 2, а представлена зависимость A = f(n) для лесовозной дороги с гравийной дорожной одеждой при $C_{\rm M} = 30\,000$ р.; $k_{\rm M} = 0,05$ р./(${\rm M}^3 \cdot {\rm KM}$); $k_{\rm B} = 0,09$ р./(${\rm M}^3 \cdot {\rm KM}$); а на рис. 2, б — зависимость $x_{\rm np} = f(b)$ для трех распространенных значений A.

С учетом того, что при размещении веток в лесном массиве эксплуатационная площадь последнего разделяется на отдельные зоны тяготения к веткам, ширину каждой полосы целесообразно принимать равной оптимальному расстоянию между ветками у местах их примыкания к магистрали. Таким образом,

$$b = \sqrt{\frac{C_{\rm B} - C_{\rm yc}}{30\gamma b_{\rm yc}}},\tag{9}$$

где C_в — стоимость постройки и содержания (за срок службы) 1 км головного участка ветки, р./км;

 C_{yc} — стоимость постройки и содержания 1 км уса, р./км;

 b_{yc} — стоимость пробега леса по усу, р./(м³ · км).

Из формулы (7) и рис. 2, б видно, что координата $x_{np} = 0$ при

№ 4

ЛЕСНОЙ ЖУРНАЛ

УДК 674.05:534.1

ВЛИЯНИЕ ДВОЯКОГО ИЗМЕНЕНИЯ РЕАКЦИИ БРЕВНА НА УГЛОВЫЕ ОТКЛОНЕНИЯ ТОРЦОВОЙ ПЛОСКОСТИ ФРЕЗЫ

Т. П. СТУКОВА, И. А. ПОПОВА

Архангельский лесотехнический институт

Внешней силой, вызывающей отклонения торцовой плоскости фрезы, является реакция бревна, равная по модулю осевой силе:

$$\overline{Q}_{\rm 6p}(t) = - \overline{Q}_{\rm oc}(t).$$

По отношению к неподвижной системе отсчета $C_{x_1y_1z_1}$ реакция бревна Q_{6p} (t) при вращении фрезы перемещается в пространстве по

дуге АКВ (рис. 1), принимая различные значения, соответствующие толщине срезаемого в данный момент слоя. Чтобы учесть двоякое изменение реакции $Q_{6p}(t)$ при вычислении угловых отклонений торцовой плоскости фрезы [3], реакцию Q_{6p} (t) привели к точке К, соответствующей максимальному значению силы Q_{60} (t) [2]. При этом получено, что реакция бревна в пространстве не перемещается, приложена в точке К, имеет постоянное направление, но изменяется по модулю. Одновременно добавляется пара сил с моментом, равным моменту силы Q_{6p} (*t*) относительно центра приведения (точки К).

Рис. 1. Сечение фрезы плоскостью среднего раднуса.

АКВ — зона резания, соответствующая центральному углу 60°.

Влияние реакции бревна $Q_{\delta p}(t)$ на угловые повороты фрезы рассмотрено нами в работе [3].

Исследуем влияние на угловые повороты фрезы момента силы Q_{6p} (t) относительно точки K, вычисляемого по формуле:

$$M_{K}(Q_{\delta p_{i}}) = Q_{\delta p_{i}}(t)_{i} p_{i},$$

где $Q_{6p}(t)_i$ — величина реакции бревна в точке N_i зоны резания AKB;

p_i — плечо силы, т. е. перпендикуляр, опущенный из точки К на линию действия реакции бревна в точке N_i;

N_i — точка зоны резания, соответствующая углу ACN_i (рис. 1); *і* изменяется от 1 до 25.

В таблице приведены значения угла ACN_i, сил Q_{бр} (t)_i, соответствующих точкам N_i на дуге AKB (рис. 1), взятых с интервалом в 2,5°. Плечо p_i вычисляли по формуле

$$p_i = 2R \sin \frac{\psi_i}{2}.$$

1986

Т. Т. Стукова, Н. А. Попова

Угол АСN _і , град	Q _{6p} (t) _i , H	<u>Ф</u> і град	р _і , м	^М К (Q _{брі}), Нм	Ф ₁ , град	М _{х1} , Нм	М _{г1} , Нм
$\begin{array}{c} 0\\ 2,5\\ 5,0\\ 7,5\\ 10,0\\ 12,5\\ 25,0\\ 17,5\\ 20,0\\ 22,5\\ 25,0\\ 32,5\\ 35,0\\ 37,5\\ 40,5\\ 45,0\\ 52,5\\ 52,0\\ 52,5\\ 57,5\\$	0 1227,0 2886,5 4015,8 5317,3 6246,9 7053,0 7474,0 7704,0 7921,0 7808,0 7487,0 7027,0 6511,0 5800,0 5425,0 4573,0 3798,0 3123,0 2550,0 1673,0 1247,0 334,0	$\begin{array}{c} 11,25\\ 10,00\\ 8,00\\ 7,50\\ 6,25\\ 5,00\\ 3,75\\ 2,50\\ 1,25\\ 0\\ 1,25\\ 2,50\\ 3,75\\ 5,00\\ 6,25\\ 7,50\\ 6,25\\ 7,50\\ 12,55\\ 12,50\\ 13,75\\ 15,00\\ 16,25\\ 15,00\\ 16,25\\ 17,50\\ 16,25\\ 15,00\\ 15,00\\ 16,25\\ 15,00\\ 16,25\\ 15,00\\ 16,25\\ 15,00\\ 16,25\\ 15,00\\ 16,25\\ 15,00\\ 16,25\\ 15,00\\ 16,25\\ 15,00\\ 16,25\\ 15,00\\ 16,25\\ 15,00\\ 16,25\\ 15,00\\ 16,25\\ 15,00\\ 16,25\\ 15,00\\ $	$\begin{array}{c} 0,12954\\ 0,11530\\ 0,10100\\ 0,08670\\ 0,07229\\ 0,05900\\ 0,04343\\ 0,02896\\ 0,01449\\ 0\\ 0\\ 0,01449\\ 0\\ 0,02896\\ 0,04343\\ 0,05900\\ 0,07229\\ 0,08670\\ 0,07229\\ 0,08670\\ 0,10100\\ 0,11530\\ 0,12953\\ 0,14372\\ 0,15782\\ 0,17855\\ 0,18580\\ 0,19967\\ 0,19967\\ 0,01100\\ 0,19967\\ 0,19967\\ 0,19967\\ 0,10100\\ 0,10100\\ 0,1100\\ 0,1100\\ 0,1100\\ 0,1100\\ 0,1100\\ 0,1100\\ 0,1100\\ 0,100\\$	$\begin{array}{c} 0\\ 141,410\\ 291,560\\ 349,050\\ 384,370\\ 361,520\\ 306,295\\ 216,470\\ 111,590\\ 0\\ -114,740\\ -226,140\\ -325,140\\ -406,660\\ -520,680\\ -527,280\\ -527,280\\ -527,280\\ -491,990\\ -448,825\\ -402,450\\ -287,520\\ -231,700\\ -66,690\\ \end{array}$	$\begin{array}{c} 1,25\\ 2,50\\ 3,25\\ 5,00\\ 6,25\\ 7,50\\ 8,75\\ 10,00\\ 11,25\\ 12,50\\ 13,75\\ 15,00\\ 16,25\\ 17,50\\ 16,25\\ 17,50\\ 20,00\\ 21,25\\ 22,50\\ 23,25\\ 25,00\\ 26,25\\ 25,00\\ 28,75\\ 30,00\\ \end{array}$	$\begin{array}{c} 0\\ 141,345\\ 290,936\\ 346,726\\ 382,085\\ 358,427\\ 302,730\\ 213,181\\ 109,446\\ 0\\ -111,450\\ -218,434\\ -312,151\\ -387,839\\ -445,682\\ -489,279\\ -510,722\\ -487,143\\ -450,324\\ -406,774\\ -360,166\\ -255,028\\ -203,138\\ -55,755\\ \end{array}$	$\begin{array}{c} 0\\6,1710\\19,0640\\30,3340\\41,8450\\47,1880\\46,5940\\37,5896\\21,7700\\ 0\\ 27,2720\\ 58,2930\\ 90,9840\\ 122,2850\\ 151,2880\\ 178,0830\\ 198,6090\\ 201,1810\\ 198,1470\\ 189,6860\\ 200,2650\\ 132,7590\\ 111,4450\\ 33,3450\\ \end{array}$
00,0		10,10	0,22011	l	01,20	5	l v

Здесь ψ_i — центральный угол, соответствующий плечу (хорде) p_i (рис. 1); R_i — средний разника фрезы (0.322 м)

В таблице представлены также значения $\psi_i/2$, p_i , M_K (Q_{6p_i}) , φ_i , проекций момента \overline{M}_K (Q_{6p_i}) на оси x_1 и z_1 .

Момент реакции бревна относительно точки K расположен в плоскости x_1Cz_1 и имеет направление перпендикуляра из точки C на плечо p_i . На участке AK момент $M_K(Q_{6p_i})$ направлен от центра C, на участке KB — к центру C.

Проекции $\overline{M}_{K}Q_{6p_{i}}$ на неподвижные координатные оси x_{1} и z_{1} вычислены по следующим формулам: на участке AK

$$M_{x_1} = M_K (Q_{6p_i}) \cos \varphi_i;$$

$$M_{x_i} = -M_K (Q_{6p_i}) \sin \varphi_i;$$

на участке КВ

$$\begin{split} M_{x_1} &= -M_K \left(Q_{6p_l} \right) \cos \varphi_i; \\ M_{z_1} &= M_K \left(Q_{6p_l} \right) \sin \varphi_l, \end{split}$$

где φ_i — угол наклона M_K (Q_{6p_i}) к осн x_1 ; на участке AK

$$\varphi_i = 12, 5 - \frac{\psi_i}{2};$$

на участке КВ

$$\varphi_i = 12.5 + \frac{\psi_i}{2}.$$

60

Разложим M_x, и M_z, в ряд Фурье по синусам [1]

$$M_{x_1} = \sum_{k=1}^{25} b_k \sin kpt;$$
$$M_{z_1} = \sum_{k=1}^{25} b'_k \sin kpt.$$

(Число членов ряда равно числу точек N_i зоны резания; k = i). Дифференциальные уравнения движения ротора (фрезы) с упругим валом примут вид [3]

$$\ddot{\beta} - \frac{H}{A}\dot{\alpha} + \frac{c}{A}\beta = \frac{1}{A}\sum_{k=1}^{25} b_k \sin kpt;$$

$$\ddot{\alpha} + \frac{H}{A}\dot{\beta} + \frac{c}{A}\alpha = \frac{1}{A}\sum_{k=1}^{25} b'_k \sin kpt.$$
(1)

Условные обозначения те же, что и в работе [3]. Частные решения системы неоднородных уравнений (1)

$$\beta = \sum_{k=1}^{25} \beta_k; \quad \alpha = \sum_{k=1}^{25} \alpha_k,$$

β_k, α_k — частные решения, соответствующие членам ряда, стоя-щим под знаком суммы в выражениях (1): где

$$\beta_k = B_k \sin kpt + D_k \cos kpt; \alpha_k = N_k \sin kpt + F_k \cos kpt.$$
 (2)

B_k, D_k, N_k, F_k — постоянные, для определения которых получена система четырех уравнений, Здесь аналогичных выражениям (17) работы [3].

Решение этих уравнений приводит к следующим выражениям для постоянных:

$$\begin{split} B_{k} &= -\frac{-b_{k} + HkpF_{k}}{A\left(\frac{c}{A} - k^{2}p^{2}\right)};\\ D_{k} &= \frac{b_{k}^{'}Hkp}{A^{2}\left(\frac{c}{A} - k^{2}p^{2}\right)^{2} - H^{2}k^{2}p^{2}};\\ N_{k} &= -\frac{-b_{k}^{'} + HkpD_{k}}{A\left(\frac{c}{A} - k^{2}p^{2}\right)};\\ F_{k} &= -\frac{b_{k}Hkp}{A^{2}\left(\frac{c}{A} - k^{2}p^{2}\right)^{2} - H^{2}k^{2}p^{2}}. \end{split}$$

Амплитуды А и сдвиги фаз є вычисляют по формулам [2]

$$\begin{split} A_{\beta_k} = \sqrt{B_k^2 + D_k^2} ; & \text{tg } \varepsilon_{\beta_k} = -\frac{D_k}{B_k} ; \\ A_{\alpha_k} = \sqrt{N_k^2 + F_k^2} ; & \text{tg } \varepsilon_{\alpha_k} = -\frac{F_k}{N_k} . \end{split}$$

Значения B_k , D_k , N_k , F_k , A_{β_k} , A_{α_k} , ε_{β_k} , ε_{α_k} вычислены на ЭВМ для индексов k, меняющихся от 1 до 25.

Просуммируем соответственно ординаты α_k и β_k в точках, отстоящих по оси абсцисс на расстояниях, равных одной двадцатой периода. По полученным значениям $\alpha = \Sigma \alpha_k$ и $\beta = \Sigma \beta_k$ строим графики изменения углов α и β во времени (рис. 2).

Рис. 2. Графики изменения углов μ и β во времени за время действия силы Q_{6p}

3

Горизонтальные отклонения сечения ножа плоскостью среднего радиуса фрезы:

$$h_{y(\alpha)}^{max} = \alpha_{max} R = 23.9 \cdot 10^{-5} \cdot 0.322 \cdot 10^{6} = 76.958$$
 MKM;
 $h_{y(\beta)}^{max} = \beta_{max} R = 36.9 \cdot 10^{-5} \cdot 0.322 \cdot 10^{6} = 118.818$ MKM.

Отклонения, вызванные реакцией $Q_{6p}(t)$, вычислены в работе [3]. Суммарные отклонения, вызванные реакцией бревна $Q_{6p}(t)$ и моментом реакции относительно точки K, имеют следующие значения:

$$\Sigma h_{y(\alpha)} = 550,00 + 76,96 = 626,96$$
 мкм;
 $\Sigma h_{y(\beta)} = 309,40 + 118,82 = 428,22$ мкм.

Следовательно, и реакция бревна Q_{6p} (*t*), и момент реакции отно-• сительно центра приведения значительно влияют на величину суммарного отклонения плоскости среднего радиуса фрезы.

Методика исследования угловых отклонений ротора (диска, фрезы), приведенная нами в работе [3] и данной статье, учитывает влияние упругих и инерционных свойств механических систем, подвижный характер внешней возмущающей силы, несбалансированность ротора и гироскопический эффект при различных режимах эксплуатации.

Применение предлагаемой методики позволит сравнивать между собой различные конструктивные варианты при определенных эксплуатационных режимах и выбирать лучшие решения с точки зрения технологической точности.

ЛИТЕРАТУРА

[1]. Демидович Б. П., Марон И. А., Шувалов Э. З. Численные методы анализа. М.: Физматгиз, 1963. [2]. Добронравов В. В., Никитин Н. Н., Дворников А. Л. Курс теоретической механики. М.: Высш. школа, 1974.
[3]. Стукова Т. П., Попова И. А., Душкин В. П. Движение неуравновешенного ротора под действием внешней возмущающей силы. Изв. высш. учеб. заведений. Лесн. журн., 1984, № 5, с. 57—65.

Поступила 28 февраля 1985 г.