1986

ЛЕСНОЕ ХОЗЯЙСТВО

УДК 630*232,311,3

О ПУТЯХ СОЗДАНИЯ СЕМЕННОЙ БАЗЫ ЛИСТВЕННИЦЫ ПОЛЬСКОЙ В ПОДМОСКОВЬЕ

А. В. ЧУДНЫЙ, М. Н. НОВИКОВ, С. В. ШУВАЛОВ

Московский лесотехнический институт

Лиственница польская — Larix polonica Racib. (L. decidua Mill. \times L. sibirica Ledeb.) вне ареала может проявлять высокую жизнеспособность и продуктивность. Так, в Подмосковье (Учинский леспаркхоз) в культурах 35 лет запас стволовой древесины колебался (в зависимости от происхождения семян) от 207,0 до 285,0 м³ на 1 га. Культуры заложены в 1952 г. А. С. Яблоковым и М. И. Докучаевой из семян, заготовленных в насаждениях близ городов Скаржиско-Каменна, Мелец и Гура Хельмова (ПНР). Лиственницу смешивали с елью европейской куртинами размером 10×10 м; размещение растений в куртине $1 \times 1,5$ м; почва среднесуглинистая, хорошо дренированная.

Наряду с высокой продуктивностью, для этих культур характерна весьма значительная дифференциация деревьев по форме стволов. К 35 годам деревьев с совершенно прямым стволом было всего 20—25 %. Эти деревья отличались и наибольшими размерами: их средний диаметр варьировал от 22,6 до 26,2 см, средняя высота — от 18,4 до 22,6 м. Остальную часть древостоя составляли деревья менее крупные с различными, в том числе и весьма значительными деформациями ствола.

Из приведенных данных можно заключить, что массовое разведение лиственницы польской в условиях Клинско-Дмитровской гряды перспективно. При этом целесообразно улучшить качественный состав создаваемых культур за счет увеличения в них прямоствольных деревьев. Этого можно достичь используя в лесокультурном процессе семена, получаемые при переопылении деревьев, оказавшихся лучшими в зоне интродукции. Такая ситуация создается только на объектах постоянной семенной базы. Их закладка возможна при соблюдении двух важных условий: если прямизна ствола наследуется и если плюсовые деревья характеризуются нормальным течением репродуктивного процесса и образуют жизнеспособные семена.

Наследуемость прямизны ствола у видов семейства Pinaceae установлена экспериментально: показатель наследуемости в широком смысле (H^2) колеблется в пределах от 0.29 до 0.47 ([1—4] и др.).

Для характеристики особенностей репродуктивного процесса нами было изучено качество шишек и семян раздельно для деревьев разных селекционных категорий (см. таблицу).

Из таблицы видно, что качество шишек и семян варьирует весьма значительно, причем вне связи с селекционной категорией дерева. Среди плюсовых встречаются деревья, продуцирующие семенной материал как высокого, так и низкого качества. Так, если плюсовые деревья № 3 и 7 образуют хорошо развитые шишки с высоким выходом семян, то дерево № 5 и особенно № 6 отличается низкими значениями этих показателей.

Качество семян в целом для всей исследованной группы деревьев невысокое: энергия прорастания колеблется от 0 до 26 %, всхожесть —

)	Селекционная категория и № дерева	я категори	я и № дере	Ba		
Показатель				Плюсовые				Нормаль.	Munico
THE PARTY OF THE P	-	63	3	₩.	5	0	7	пые	Brie
Балл плодоношення (по А. А. Корчагину)	က	າວ	က			1	5	6	6
Плина шпппак мм		_	III	Шишки					ı
in V	25,7 24—28 7,6	26,6 23—31 8,9	27,3 25—30 7,7	26,1 25—27 2,8	24,6 20—31 17,8	18,0 15—21 16,3	25,7 23—28 5.8	27,8 22—33 11.4	30,2 28—33 4.4
Масса шишки в воздуш- 100 -сухом состоянии, г x	0.6	- 6	66	-					î (
lim V	1,5-2,6	$1,6^{2,1}_{-2,8}$ $25,0$	$1,5\frac{2,2}{20,1}$	1,6—2,2 9,7	1,0 1,3—2,4 29,9	0,4 0,4 39,3	1,6—2,9	$\frac{2,1}{1,1-2,7}$	1,9 - 2,3
Число семян на шишку, шт.					•			5	2
lim V	26,6 10—49 47,6	45,0 9 <u>—</u> 91 60,2	24,5 1—63 71,1	14,7 0—56 124,6	$\begin{array}{c} 11,6 \\ 0-24 \\ 86,7 \end{array}$	9,3 4—13 41,6	21 - 72 $31,2$	15,0 0—56 116,1	29,6 2—55 53,5
i			Se.	Семена					
ымход семян, % Масса 1000 семян, г Энергия прорастания за	4,4	8,9 3,58	3,5 5,13	3,73	2,8 3,64	4,0 2,7	8,4 5,34	3,7 4,52	6,7 5,60
7 дн, % Всхожесть за 25 дн, % Непроросшие:	8 9 10	8 20	26 44	33	3	9	2 59	11	20 56
загнившие пустые повоеждениме вреди-	2 82	80	44	4 51	49	3 76	2 30	- 88	e 4
телями]	12	12	41	16	6	2	

значение для трех деревьев каждой категории. 2. х—среднее арифметическое; lim— минимум и максимум в значениях показателя; V— коэффициент вариации.

от 5 до 59 %. Особенно низки значения этих важных показателей у деревьев № 5 и 6: энергия прорастания — соответственно 0 и 3 %, всхожесть — 5 и 7 %. Низкое качество семян в исследованных культурах обусловлено двумя причинами: 1) неблагоприятным пыльцевым режимом вследствие многоярусного расположения деревьев как самой лиственницы, так и ели (отмечено, что при обилии пыльцы лиственница европейская, бнологические свойства которой во многом сходны с лиственницей польской, продуцирует семена со всхожестью около 90 %); 2) значительным повреждением шишек и семян лиственничной мухой (Lasiomma laricicola Karl.), доля поврежденных деревьев составляет около 70 %.

По итогам проведенного исследования можно заключить, что для разведения лиственницы польской в условиях Клинско-Дмитровской гряды следует создавать объекты постоянной семенной базы массовым размножением лучших фенотипов, выделенных в районе интродукции.

Высокое значение показателя наследуемости (H^2) прямоствольности указывает на то, что предпочтение следует оказывать созданию клоновых плантаций.

В число критериев, которыми руководствуются при выделении плюсовых деревьев, кроме размеров и качества ствола, формы кроны следует добавить показатели, характеризующие особенности репродуктивной деятельности: балл плодоношения, соотношение и синхронность развития макро- и микростробилов.

Необходимо также предусмотреть защиту деревьев от вредителей шишек и семян.

ЛИТЕРАТУРА

[1]. Barber J. C. Inherent variation among slash pine progenies at the ida cason callaway foundation.— U. S. Forest Serv. [USDA] Res. Pap. SE-10, 1964, p. 90. [2]. Gansel Ch. R. Inheritance of stem and branch characters in slash pine and felation to gum yield.— Eighth South. Conf. Forest Tree Improv. Proc., 1966, p. 63—67. [3]. Mergen F. Inheritance of deformities in slash pine.— South. Lumberman, 190 (2370), 1955, p. 30—32. [4]. Nikles D. G. Progeny tests of slash pine (Pinus elliottii Engelm.) in Gueensland. Australia.— Eighth South Conf. Forest Tree Improv. Proc., 1966, p. 112—121.

Поступила 5 апреля 1985 г.

УДК 630*56:681.3

моделирование хода роста дубовых древостоев

М. М. МИХАЙЛОВ

Марийский политехнический институт

При математическом моделировании хода роста обычно используют самые разнообразные уравнения, даже при описании динамики одного и того же таксационного показателя. Это создает определенные трудности в достижении однозначной оценки изучаемого процесса. Например, А. А. Макаренко и А. И. Колтунова [2] при моделировании динамики сосняков Северного Казахстана использовали три различных уравнения. Математическая оценка наиболее распространенных функций для выражения роста древостоев содержится в работах Н. Н. Свалова [7, 8]. Тенденция к использованию разных уравнений стала особенно заметной после выхода в свет работы Ф. Корсуня [10], в которой он выступил с отрицанием самой возможности существования закона роста для всех таксационных показателей. Однако, несмотря на это категоричное выступление, стремление исследователей к рациональному (однозначному) решению проблемы моделирования хода роста не прекратилось. В последнее время было предложено несколько однозначных методических решений, из которых самым простым, на наш взгляд, является предложение Н. Я. Саликова [4, 5]. Ниже излагается его методика и результаты ее апробации на примере таблиц динамики таксационных показателей семенных дубовых древостоев типа леса дубрава кленово-липовая.

По методике Н. Я. Саликова, моделирование хода роста всех таксационных показателей осуществляли на базе единой математической модели:

$$y = m_y \left(1 - 2^{-\frac{A}{T}} \right)^{k_y}, \tag{1}$$