№ 6

лесной Журнал

1987

УДК 625.711.2

СТАТИСТИЧЕСКАЯ МОДЕЛЬ ПОПЕРЕЧНОГО МИКРОПРОФИЛЯ ЛЕСОВОЗНЫХ ДОРОГ

А. А. БОЙКО, Н. И. БИБЛЮК, Б. Т. ПЕРЕТЯТКО

Львовский лесотехнический институт

При решении задач, связанных с эксплуатацией и проектированием лесотранспортных систем и основанных на моделировании их движения, необходимо знать обобщенные всроятностные характеристики микропрофилей лесовозных дорог.

Только в последнее время опубликованы работы [2, 4], в которых изложены достаточно полные и систематизированные сведения о микропрофилях дорог общего пользования. Аналогичные работы для лесовозных дорог нам неизвестны, хотя последние характеризуются наличием глубоких выбоин и особым расположением неровностей, сформировавшихся под воздействием однотипных лесовозных автопоездов.

В настоящей работе приведены результаты исследования статистических характеристик поперечных микропрофилей [3, 7] 25 участков лесовозных дорог и методика расчета обобщенных спектральных плотностей с учетом скорости движения транспорта.

Параметры неровностей по колеям движения, в зависимости от пройденного пути, регистрировали как нивелированием, так и при помощи специального устройства, сконструированного на базе авиационного гироскопического прибора в виде одноосной прицепной тележки, буксируемой автомобилем.

Учитывая, что скорость движения транспортных средств не превышает 70 км/ч на лесовозных дорогах и 15 км/ч на трелевочных волоках, длина участков измерений принята, соответственно, больше 400 и 80 м [6]. Профиль спрямляли участками длиной не менее 40 и 8 м. Шаг дискретизации микропрофиля равен 0,2 м [6].

Рис. 1. Нормированные корреляционные функции поперечных микропрофилей лесовозных дорог: I – асфальтная (\mathbb{N} 1); 2 – гравийно-щебеночная, обработанная дегтем (\mathbb{N} 4); 3 – грунтовая с накатанными колеями (\mathbb{N} 12); 4 – магнстральный трелевочный волок (\mathbb{N} 18)

Корреляционную функцию оцепивали по общепринятой методике [7]. Нормированные корреляционные функции (рис. 1) аппроксимировали уравнениями вида

$$\rho_{\beta}(x) = \sum_{i=1}^{n} A_{i} e^{-\alpha_{i} |x|} \cos{(\beta_{i} |x|)}, \qquad (1)$$

где A_i — весовые коэффициенты;

а_i, β_i — коэффициенты корреляционной связи.

Параметрические модели нормированных корреляционных функций (табл. 1), в заданном вероятностью 0,95 доверительном интервале, составляли с помощью ЭВМ по алгоритму [5] случайного локального поиска со спуском по наилучшей пробе. Точность приближения представлена отношением среднего квадратичного отклонения уравнения модели от экспериментальной кривой к единице ($\rho_{\beta}(0) = 1$).

	¥	ppc.ngu	топные фуни	иии попе)	речных	инкроп	рофилей	характ	ерных	участков	JIECOBO3	ных до	por	
Ho-	П			коэффициен	ты моде,	neit uop	мированно	й функци	ін (умно	женные п	a 10ª)			
мер участ- ка до- роги	длинер- Спя, 10° рад ²	$A_1; A_5$	α1, α ₅	B1; B5	$A_2; A_6$	^ป ซ : ⁶ ช	β3; β ₆	A3; A7	a; a,	Ba; 5,	A., A8	α*; α ⁸	A1; Be	Точность прибли- жения, %
						Acф	anbTHble							
-0200	12,9 35,9 45,3	780 607 402	46 171 137	000	$\begin{bmatrix} 63 \\ 171 \\ 333 \end{bmatrix}$	21 6 7	150 132 43	70 191 214	22 9	216 185 73	86 31 51	29 28 13	328 1 008 391	2,8,0 ,9,8,0
						$\Gamma_{p_{\delta}}$	авийные							
4 K	12,9 40,1	684 23 498	1 874 95 63	1 873 0	201	18	230		8 -	647 	39	1 50	890	3,1 2,1
92	87,0 88,4	297 378	728	000	254 311	.0 3 9 1 8	305 305	449 221	50 14	455 150	118	=	419	3,2 % 0 3, 2 %
						Γp)	/HTOBLie							
800 1038	186,4 272,5 148,1	395 502 297	882 841 2 032 032	0000	427 289 162	187 97	605 370 367	178 2.19 133	21 67 236	$1 \begin{array}{c} 252 \\ 760 \\ 582 \end{array}$	256	123	 1 036	0,00 4,00 0,00
-	993.5	00	07 7	1 686	202	78	3 074	1	1	I	[1		
222	351.9	675 876	136		621	828 828	223	21	1 =	362	89	171	1 279	7,7
14	617,0	414 31	189	212	149	<u>200</u>	72 72 256	118	14	104 335	126	1 15	153	1,6
						perebo	чные вол	ОКН						
15	621,3	472	$10\ 200$	0	238	170	871	37	32	$2 \ 396$	148	187	3 026	2,8
16	86,2	346	2 783 2 783	**00°	305	52	532	266	187	016	65	84	2 233	3,0
17	356,0	492 622	00 1 945	7 020 0	139	33	654	369	120	1 369] [3,1
19 19	146,3 236,2	487	671 2 893 2 2 893	000	295	132 393	2727 461	169 118	793 160	3 264 1 624	42	258	6 458	2,4 4,0
		28	202	8 300		1	!		1]	-		ļ	,
Пр строка –	имечап – коэффии	и е. Для иентам	і каждого н А ₅ ,, а ₃	omepa yuac § ₈ . Ec.	стка дор ли коэф	оги пеј фидиеј	рвая стро нты А ₅ , а	Ka coori	зетству За равн	ет коэфф ы пулю,	ициента то втор	м А ₁ , а ая стро	1,, β4, Ka orcyr	а вторая ствует.

Модель микропрофиля лесовозных дорог

Анализ данных табл. 1 в зависимости от качественного состояния дорожной поверхности показал, что с увеличением степени первого члена суммы (1) возрастает и значение гармонических составляющих с большим значением коэффициента β. Число членов уравнения (1) больше для дорог с неоднородным составом покрытия (№ 4 — гравийно-щебеночная с некачественной обработкой дегтем, № 7 — гравийно-

Таблица 1

τοπομ γιμεοσολεμ αθληλβυν γμηθ

45

песчаная, № 10 — грунтовая, улучшенная шлаком, № 14 — грунтогравийная) и возрастает с повышением их изношенности.

Для обобщения результатов исследований выполнен корреляционный анализ зависимости среднего квадратичного отклонения (σ_{β}) угла поперечного сечения от интервала пути корреляции (Δx), который подтвердил выводы И. Г. Пархиловского [4] о существовании зависимости:

$$\sigma_{\beta} = k_{\rho} \Delta x. \tag{2}$$

Установлено наличие статистической зависимости между интервалом пути корреляции (Δx) и длиной неровности (l), по которой выполнено спрямление микропрофиля в виде:

 $\Delta \mathbf{x} = k_l l. \tag{3}$

Значения эмпирических корреляционных отношений (0,8 для автодорог и 0,65 для волоков) позволяют утверждать, при доверительной вероятности 0,95, что связь существенна. Проверка экспериментальных данных на однородность по средним значениям и дисперсиям подтвердила различие коэффициентов регрессии (k_l) для автомобильных дорог и трелевочных волоков и не выявила, в связи с ограниченным объемом данных, различий для автодорог с разными типами покрытий.

Доверительные интервалы для коэффициентов уравнений (2) и (3), при уровне значимости 0,05, приведены в табл. 2. При этом большие значения коэффициента k_{ρ} соответствуют дорогам с изношенным покрытием, а коэффициента k_{I} — дорогам с одеждой, обладающей большей способностью к накоплению деформаций.

Таблица 2

Границы доверительных интервалов коэффициентов регрессии

1
$\begin{array}{c} 0,038 - 0,084 \\ 0,038 - 0,084 \\ 0,038 - 0,084 \end{array}$

Известно, что при увеличении скорости движения диапазон параметров неровностей, оказывающих влияние на колебания транспортных средств, сдвигается в область больших длин и, следовательно, высот, т. е. изменяется как частотный, так и амплитудный состав воздействия. С использованием зависимостей (2) и (3) представляется возможным учесть эту особенность формирования воздействия микропрофиля путем представления средней квадратичной высоты неровности как функции скорости движения

$$\sigma_3 = k_0 k_l V / f_m, \tag{4}$$

где V — скорость движения, м/с;

f_m — низшая частота возбуждения, которая вызывает колебания подрессоренных масс транспортного средства, Гц (для грузовых автомобилей f_m == 0,5 Гц [6]).

Нормированная спектральная плотность микропрофиля, корреляционная функция которого аппроксимирована уравнением (1), может быть представлена [6, 7] в виде:

$$S_{\beta}^{H}(\Theta) = 2 \sum_{i=1}^{n} \frac{A_{i} \alpha_{i} \left(\alpha_{i}^{2} + \beta_{i}^{2} + \Theta^{2}\right)}{\Theta^{4} + 2 \left(\alpha_{i}^{2} - \beta_{l}^{2}\right) \Theta^{2} + \left(\alpha_{i}^{2} + \beta_{l}^{2}\right)^{2}},$$
(5)

где *О* — путевая частота, 1/м.

46

Рис. 2. Усредненные оценки спектральных плотностей поперечных микропрофилей лесовозных дорог: 1—асфальтные; 2— гравийные; 3— грунтовые; 4— трелевочные волоки

Рис. 3. Спектральная плотность воздействия микропрофиля грунтовой дороги (№ 12) в поперечной вертикальной плоскости: сплошная линия — рассчитаниая по формулам (5) и (7); штриховая — по формулам (6) и (7); скорость движения: *I* — 5 км/ч; *2* — 10; *3* — 20; *4* — 30; *5* — 40 км/ч

Усредненные спектральные плотности (рис. 2) по каждому типу дорог аппроксимированны уравнением

$$S^{\rm H}_{\beta}(\Theta) = A\Theta^{-B}.\tag{6}$$

Точность коэффициентов регрессии (табл. 3) оценена в соответствии с методикой [1].

Таблица З

Доверительные интервалы коэффициентов регрессии уравнения (6)

Тип дороги	A	В
Асфальтные Гравийные Грунтовые Трелевочные волоки	$\begin{array}{c} 0,130 - 0,148 \\ 0,195 - 0,365 \\ 0,330 - 0,396 \\ 0,903 - 0,985 \end{array}$	2,050 - 2,086 1,846 - 1,958 1,885 - 1,955 1,659 - 1,705

Сиектральная плотность воздействия неровностей поперечного микропрофиля на транспортное средство определяется выражением

$$S_{\beta}(\omega) = \sigma_{\beta}^{2} S_{\beta}^{H}(\omega), \qquad (7)$$

где ω — угловая частота воздействия, 1/с.

Переход от функции воздействия по протяженности (5) или (6) к функции воздействия по времени $S^{\rm u}_{\beta}$ (ω) осуществляется путем умножения коэффициентов корреляционной связи на принятую скорость движения [6] в формуле (5) или заменой параметра *A* на *D* в (6). Параметр *D* определяют по формуле [4]

$$D = AV^{B-1}.$$
(8)

Приведенные данные позволяют, в зависимости от целей и задач расчета, принять модель микропрофиля, которая учитывает наличие гармонических составляющих (5), или ограничиться более общим представлением его (6). Качественное отличие функции воздействия, рассчитанной по зависимостям (5) и (6), показано на рис. 3.

47

Новый метод задания дисперсии неровностей микропрофиля (4) позволяет более полно отобразить физическую сущность процесса возбуждения колебаний и может быть взят за основу при обобщении результатов исследований статистических характеристик микропрофилей опорных поверхностей.

ЛИТЕРАТУРА

[1]. Гришин В. К. Статистические методы анализа и планирования экспериментов. — М.: МГУ, 1975. — 128 с. [2]. Динамика системы дорога — шина — автомобиль водитель / Под ред. А. А. Хачатурова. — М.: Машиностроение, 1976. — 535 с. [3]. Колебания автомобиля. Испытания и исследования / Под ред. Я. М. Певзнера. — М.: Машиностроение, 1979. — 208 с. [4]. Пархиловский И. Г. Автомобильные листовые рессоры. Теория, расчет и испытания. — М.: Машиностроение, 1978. — 232 с. [5]. Перетятко Б. Т., Билык Б. В. Оценка точности аппроксимации корреляционных функций микропрофиля дорожной поверхности // Исследование лесопромышленных тракторов: Тр. / ЦНИИМЭ. — Химки, 1982. — с. 78—81. [6]. Ротенберг Р. В. Подвеска автомобиля. — 3-е изд., перераб. и доп. — М.: Машиностроение, 1972. — 392 с. [7]. Силаев А. А. Спектральная теория подрессоривания транспортных машин. 2-е изд., перераб. и доп. М.: Машиностроение, 1972. — 192 с.

Поступила 24 ноября 1986 г.

УДК 630*378.34

ИНЕРЦИОННЫЕ ХАРАКТЕРИСТИКИ ПЛОТОВ ПРИ ПЕРЕМЕННОЙ ВЕЛИЧИНЕ ПРИСОЕДИНЕННОЙ МАССЫ

Л. В. МЕЛЬНИКОВ, А. А. МИТРОФАНОВ, К. А. ЧЕКАЛКИН

Архангельский лесотехнический институт

Торможение плотов в пунктах остановки при наличии скоростей течения делится на свободную и активную стадии. Поскольку при свободном торможении плота его техническая скорость даже при бесконечной длительности торможения всегда выше скорости течения в реке v_p [1], то активная стадия торможения будет непременно иметь два этапа. На первом этапе техническая скорость движения плота v гасится от скорости его подхода к пункту остановки v_n ($v_n > v_p$) до скорости течения v_p , на втором — от v_p до нуля.

Если результаты исследования неравномерного движения плота в неподвижной жидкости перенести на процессы остановки его в речном потоке, то свободное торможение плота и первый этап активного торможения уподобляется его торможению в неподвижной жидкости, так как скорость обтекания потоком уменьшится от относительной скорости буксировки до нуля. Второй этап активного торможения, с точки зрения гидродинамики, есть не что иное, как разгон плота в неподвижной жидкости, так как скорость его относительно потока возрастает от нуля до v_0 .

Как известно, инерционные характеристики плотов (время и путь торможения) в значительной мере зависят от присоединенных масс. По исследованиям АЛТИ [2, 4], при торможении сортиментного плота в неподвижной жидкости коэффициент, учитывающий совокупное влияние присоединенных масс и нестационарности движения, определяют по формуле:

$$n = -0,137 + 0,413C + 27,16 e^{-4,60C},$$

$$\frac{B}{\sqrt[3]{0,8LBT}};$$
(1)

где

L, B, T — соответственно длина, ширина и осадка плота.