

Рис. 2. Зависимости и некоторые частные примеры определения направления магистрали.

а — зависимость комплексиого коэффициента A от срока действия магистрали B данной полосе лесного массива; $I - Q_{\Gamma} = 450$ тыс. м³; $2 - Q_{\Gamma} = 300$ тыс. м³; $3 - Q_{\Gamma} =$ = 150 тыс. м³; 6 — зависимость предельного значения координаты $x_{\rm пр}$ точки B от ширины полосы; $I - A = 1,75 \times$ $\times 10^{-5}$; $2 - A = 3,5 \cdot 10^{-5}$; $3 - A = 7,0 \cdot 10^{-5}$; 6 — пример назначения направления магистрали при ширине полос 6 max, определяемой по формуле (10); $z \sim$ возможный вариант направления магистрали ОАВ'С с ответвлением AD для лесных массивов со сложной конфигурацией границ и весьма неравномерным размещением запасов леса.

На рис. 2, а представлена зависимость A = f(n) для лесовозной дороги с гравийной дорожной одеждой при $C_{\rm M} = 30\,000$ р.; $k_{\rm M} = 0,05$ р./(${\rm M}^3 \cdot {\rm KM}$); $k_{\rm B} = 0,09$ р./(${\rm M}^3 \cdot {\rm KM}$); а на рис. 2, б — зависимость $x_{\rm np} = f(b)$ для трех распространенных значений A.

С учетом того, что при размещении веток в лесном массиве эксплуатационная площадь последнего разделяется на отдельные зоны тяготения к веткам, ширину каждой полосы целесообразно принимать равной оптимальному расстоянию между ветками у местах их примыкания к магистрали. Таким образом,

$$b = \sqrt{\frac{C_{\rm B} - C_{\rm yc}}{30\gamma b_{\rm yc}}},\tag{9}$$

где C_в — стоимость постройки и содержания (за срок службы) 1 км головного участка ветки, р./км;

 C_{yc} — стоимость постройки и содержания 1 км уса, р./км;

 b_{yc} — стоимость пробега леса по усу, р./(м³ · км).

Из формулы (7) и рис. 2, б видно, что координата $x_{np} = 0$ при

ствуют. Полосы поглощения 1000, 1375, 1450, 1500 см⁻¹, характерные для метильных групп, после окисления, совершенно очевидно, становятся менее интенсивными.

Бензилбенойные кислоты были испытаны в качестве проклеивающего агента для придания гидрофобности бумаге, при этом были получены положительные результаты.

Для проклейки бумаги ББК применяли в виде полностью нейтрализованного клея по технологии проклейки канифольным клеем [3].

Композиция бумажной массы — 100 % сульфитной беленой целлюлозы. Расход клея составлял 2,0 %, сернокислого алюминия — 4,0 %, к массе абсолютно сухого волокна. Образцы бумаги массой 100 г/м² отливали на аппарате Рапид-Кётен. Степень проклейки определяли двумя методами: штриховым и по Коббу. Результаты опытов приведены в таблице.

Нами показано, что вместо индивидуальных углеводородов (например, псевдокумол, ксилолы и др.) можно использовать заксилольную фракцию (смесь углеводородов С-9), в которой псевдокумол составляет 44 %, и проводить конденсацию и окисление в тех же условиях. При этом получается не менее 90 [% ББК, обладающих столь же высокими проклеивающими свойствами.

На основании экспериментальных данных и результатов проклейки бумаги можно предложить следующие условия окисления дипсевдокумилметана: концентрация ДПКМ — 0,5 моль/л; концентрация ледяной уксусной кислоты — 16,8 моль/л; концентрация ацетата кобальта — 2,8 · 10⁻² моль/л; концентрация бромида натрия — 0,8 · 10⁻² моль/л; продолжительность окисления — 5 ч; температура — 120 °C; скорость подачи кислорода — 0,44 моль/ч.

ЛИТЕРАТУРА

[1]. Карякин Ю. В. Чистые химические реактивы.— М.: Госхимиздат, 1947, с. 283. [2]. Накониси К. Инфракрасные спектры и строение органических соединений.— М.: Мир, 1965, с. 51. [3]. Петров А. П. Проклейка бумаги и картона.— М.: Лесн. пром-сть, 1964, с. 165. [4]. Синтез замещенных бензилбензойных кислот на основе нефтехимического сырья/ О. К. Завьялова, А. И. Конокотина, Т. А. Соколова и др.— ЖПХ, 1978, № 8, с. 1843—1847.

Поступила 25 июня 1985 г.

УДК 533.6.011: 536.244.45

ОБ ОСОБЕННОСТЯХ ТУРБУЛЕНТНОГО ОБМЕНА В ЦИКЛОННЫХ КОЛЬЦЕВЫХ КАМЕРАХ

Э. Н. САБУРОВ, С. И. ОСТАШЕВ

Архангельский лесотехнический институт

Методика расчета тангенциальной составляющей скорости потока w_{φ} в кольцевых циклонных устройствах, применяемых на предприятиях Минлесбумпрома и в других отраслях промышленности, изложена в работе [3]. Для нахождения распределений радиальной и аксиальной составляющих необходимо предварительно определить касательное напряжение трения в потоке $\tau_{r_{\varphi}} = -\rho w_{r}^{\prime} w_{\varphi}^{\prime}$ (р — плотность потока; w_{r}^{\prime} , w_{φ}^{\prime} — пульсационные компоненты радиальной и тангенциальной составляющих скорости) — наибольшую из составляющих тензора турбулентных напряжений. При феноменологическом подходе, основанном на понятии пути перемешивания, для плоских закрученных потоков наибо-

лее часто используют два допущения о связи турбулентных напряжений с характеристиками стратифицированного по скорости осредненного течения. При первом — турбулентные напряжения связывают с градиентом момента (циркуляции) тангенциальной скорости $M = w_r r$ (r -текущий радиус) [2]; во втором, в соответствии с обобщенной ги-потезой Кармана [1, 2, 5], с градиентом углевой скорости $\omega = w_{\varphi}/r$. Напряжение т_{го} (далее индекс го в целях упрощения записи опускаем) в обоих случаях определяем по формуле

$$\begin{aligned} \tau_{\Gamma(\omega)} &= \left(\rho l_{\Gamma(\omega)}^2 / r^{\pm 2}\right) \left| \frac{\partial}{\partial r} \left(w_{\varphi} r^{\pm 1} \right) \right| \frac{\partial}{\partial r} \left(w_{\varphi} r^{\pm 1} \right) = \\ &= \rho l_{\Gamma(\omega)}^2 \left| \frac{\partial w_{\varphi}}{\partial r} \pm \frac{w_{\varphi}}{r} \right| \left(\frac{\partial w_{\varphi}}{\partial r} \pm \frac{w_{\varphi}}{r} \right), \end{aligned} \tag{1}$$

где *l* — путь перемешивания;

индекс Г и знак «+» соответствуют связи с градиентом циркуляции тангенциальной скорости;

индекс w и знак «---» - с градиентом угловой скорости.

Для описания безразмерной тангенциальной скорости используем аппроксимацию [3]

$$\overline{w} = \frac{w_{\varphi}}{w_{\varphi m}} = \left(\frac{2\eta}{1+\eta^2}\right)^n.$$
(2)

Здесь $w_{\varphi m}$ — максимальное значение w_{φ} в ядре потока; $\eta = (r - r_b)/(r_{\varphi m} - r_b)$ — безразмерный текущий радиус; r_b и $r_{\varphi m}$ — радиусы внутренней теплообменной поверх-

ности и положения $w_{\circ m}$;

n — постоянная для данной камеры величина. Тогда распределение безразмерной угловой скорости

$$\overline{\omega} = \left(\frac{w_{\varphi}}{r}\right) / \left(\frac{w_{\varphi m}}{r_{\varphi m}}\right) = \left(\frac{2\eta}{1+\eta^2}\right)^n \frac{1+b}{\eta+b}, \qquad (3)$$

где $b = r_b/(r_{\varphi m} - r_b)$ — безразмерный радиус внутренней цилиндрической стенки камеры.

Распределение безразмерной циркуляции тангенциальной скорости

$$\overline{\Gamma} = \frac{w_{\varphi}r}{w_{\varphi m}r_{\varphi m}} = \left(\frac{2\eta}{1+\eta^2}\right)^n \frac{\eta+b}{1+b}.$$
(4)

Градиенты Ги о

$$\frac{\partial \overline{\Gamma}}{\partial \eta} = \left(\frac{2\eta}{1+\eta^2}\right)^{n-1} \frac{2(\eta+b)}{(1+b)(1+\eta^2)} \left(n\frac{1-\eta^2}{1+\eta^2} + \frac{\eta}{\eta+b}\right);$$
(5)

$$\frac{\partial\overline{\omega}}{\partial\eta} = \left(\frac{2\eta}{1+\eta^2}\right)^{n-1} \frac{2(1+b)}{(1+\eta^2)(\eta+b)} \left(n\frac{1-\eta^2}{1+\eta^2} - \frac{\eta}{\eta+b}\right).$$
(6)

Безразмерное касательное напряжение (1)

$$\bar{\tau}_{\Gamma(\omega)} = \frac{\tau_{\Gamma\varphi}}{\rho w_{\varphi m}^2} = \frac{l_{\Gamma(\omega)}^2}{(\eta+b)^2} \left| (\eta+b) \frac{\partial w}{\partial \eta} \pm w \right| \left[(\eta+b) \frac{\partial w}{\partial \eta} \pm w \right].$$
(7)

Здесь $\overline{l}_{\Gamma(\omega)} = l_{\Gamma(\omega)} / (r_{\varphi m} - r_b)$ — безразмерный путь перемешивания. На рис. 1 показаны распределения (2)—(7) для кольцевой камеры с b = 2,0 и n = 0,5, а в таблице для сравнения приведены распределения тех же характеристик для обычной циклонной камеры с b = 0 и n = 2,0.

В обычных циклонных камерах максимум τ_r (при Условии $\alpha_r = \text{const}$ и $l_r = \alpha_r r$) располагается во внутренней зоне ядра потока, в кольцевых смещается к поверхности внутренней стенки канала. Распределение то (при условии $a_{\omega} = \text{const}$ и $l_{\omega} = a_{\omega} r$) имеет более сложный характер. В обычных камерах τ_ω (меньший по один из максимумов величине) располагается во внутренной зоне ядра потока, а другой - во внешней; в кольцевых камерах первый максимум смещается к поверхности цилиндра. При $\partial \overline{\Gamma} / \partial \eta = 0$ и $\partial \omega / \partial \eta = 0$ (при $\alpha_{\Gamma(\omega)} =$ = const) $\tau_r = 0$ и $\tau_{\omega} = 0$.

Анализ данных, представленных на рис. 1 и в таблице, а также других данных в широком диапазоне изменения n и b позволил сделать вывод о том, что в методиках определения τ_r и τ_{ω} по приведенным формулам нет большого различия. К важному достоинству уравнения для определения τ_{ω} следует отнести знакопеременный характер изменения трения, свидетельствующий о различном (стабилизирующем и дестаби-

Рис. 1. Безразмерные распределения характеристик потока в циклонной кольцевой камере при b = 2,0 и n = 0,5.

 лизирующем) влиянии центробежных сил на уровень турбулентности потока. В области $\partial/\partial r$ (w_{φ}/r) > 0 независимо от знака w'_r корреляция $\overline{w'_r w'_{\varphi}}$ отрицательна ($\tau_{\omega} > 0$), что соответствует условию стабилизирующего (консервативного) влияния центробежных сил. В области $\partial/\partial r$ (w_{φ}/r) < 0 $\overline{w'_r w'_{\varphi}} > 0$ ($\tau_{\omega} < 0$) воздействие центробежных сил дестабилизирующее (активное).

Из анализа динамического уравнения для компонент тензора турбулентной энергии [5] сделан вывод о том, что при $\partial/\partial r (w_{\varphi}/r) < 0$ и $\partial/\partial r (w_{\varphi}r) > 0$ во внешней части ядра потока должно наблюдаться относительное уменьшение корреляции $\overline{w'_r w'_{\varphi}}$, а при $\partial/\partial r (w_{\varphi}r) < 0$ и

Характеристика	Численное значение характеристики при η						
	0,1	0,4	0,8	1,2	1,6	2,0	3,0
w	0,039	0,475	0,951	0,967	0,807	0,639	0,359
$\overline{\Gamma}$	0,003	0,190	0,761	1,160	1,292	1,279	1,077
ω	0,392	1,189	1,189	0,806	0,504	0,319	0,119
Γίω	0,010	0,160	0,640	1,440	2,560	4,000	9,000
∂ <i>Γ</i>]∂η	0,116	1,164	1,369	0,618	0,099	0,128	0,216
<u></u> δω/δη	3,765	1,332	0,834	0,914	0,592	0,351	0,104
(∂Γ/∂η)/(∂ ω/∂η)	0,030	0,873	-1,641	0,676	0,168	0,363	2,067
τ _Γ	0,013	1,356	1,875	0,382	0,009	0,016	0,046
τ _ω	0,001	0,045	0,285	1,733	2,298	1,982	0,876

Распределения основных характеристик потока в циклонной камере при b = 0 и n = 2

 $\partial/\partial r (w_{\varphi}r) < 0$ (за пределами ядра потока в периферийной области течения) компоненты корреляционного тензора в том числе и $\overline{w'_r w'_{\varphi}}$ возрастают, что также соответствует имеющимся опытным данным. В то же время при $\partial/\partial r (w_{\varphi}/r) = 0$ $\overline{w'_r w'_{\varphi}} = 0$, т. е. при вращении газа по закону твердого тела $w_{\varphi} = r$ const пульсационное движение должно полностью затухать, в действительности в небольшой области течения, близкой по своим свойствам к этим условиям (так называемой «квазитвердой» зоне), наблюдаются наибольшие значения $\overline{w'_r w'_{\varphi}}$. В соответствии с формулой для определения $\overline{\tau}_r$ в пределах ядра потока влияние центробежных сил носит только стабилизующий характер и лишь за его пределами становится активным. Сделанные выводы справедливы лишь при $\alpha = \text{const.}$ Как показано в дальнейшем, коэффициент α , характеризующий турбулентную структуру закрученного потока, в действительности является сложной функцией r и распределения w^{φ} .

Несомненно, важный фактор, определяющий имеющееся несоответствие опытных [5] и расчетных распределений $\overline{w'_r w'_{\varphi}}$ и касательного напряжения трения,— существенное влияние вторичных течений. Особо важная роль в этом принадлежит выходному вихрю. При рациональной системе ввода (имеющего общее смещение к выходному торцу) газов основная их часть, питающих приторцевой радиальный поток (который в приосевой области у внутреннего цилиндра разворачивается и переходит в выходной вихрь), поступает из периферийного обратного вихря [3]. Последний проходит по зоне активного влияния центробежных сил на турбулентность потока. Поэтому с радиальным приторцевым потоком в выходной вихрь, несмотря на потери на трение, поступают газы, имеющие достаточно высокий уровень энергии. Осевые скорости у поверхности внутреннего цилиндра соизмеримы с тангенциальными.

Перемешивание газа с повышенным уровнем энергии и пониженным (вследствие влияния центробежных сил), а также высокие градиенты осевой скорости в некоторых случаях, из-за смешения закрученных потоков с противоположным осевым направлением, сильно влияют на условия турбулентного обмена и приводят к появлению несоответствий действительной картины распределения статистически средних значений корреляций $\overline{w}_{r}'\overline{w}_{\phi}'$ и полученной из общефизических соображений для плоского течения. В зависимости от характера распределений w_{x} (w_{x} — осевая компонента скорости), ω и их градиентов в приосевой зоне может наблюдаться область, в которой энергия пульсационного движения передается в осредненное вращательное движение. В этом случае энергия способствует поддержанию разности скоростей при ее увеличении.

Выходной вихрь и его взаимодействие с осевым и периферийным обратными вихрями имеют важное значение не только с точки зрения распределений турбулентных характеристик потока, но и осредненных. В частности, вазимодействием этих вихрей следует объяснить существование иногда в центре рабочего объема небольшой области потенциального вращения ($w_{o}r = \text{const}$).

Кроме рассмотренных, существуют и другие методы определения т, учитывающие пространственность течения [6]. Однако для технических расчетов сложного циклонного турбулентного потока вряд ли целесообразно стремиться к уточнению и соответственно усложнению связей турбулентных и осредненных характеристик, так как, во-первых, пока нет достаточно надежных количественных рекомендаций для определения осевых и пульсационных характеристик, а, во-вторых, это значительно усложнит расчетные соотношения.

В этих условиях целесообразно попытаться уточнить связь длины пути перемешивания с радиальной координатой, поэтому нами были проанализированы зависимости, рекомендованные в работе [2]. Выполненный анализ показал, что предложенные формулы [2], с точки зрения рассматриваемого вопроса, не имеют преимуществ перед ранее применявшейся l = ar. Поэтому в дальнейшем последняя формула была принята за основу, а сложность зависимости l от r перенесена на коэффициент а. Для определения а использованы система уравнений, описывающих движение жидкости в ядре потока циклонной камеры [3], и уравнения, являющиеся математической формулировкой гипотезы Прандтля о возможном обобщении теории (основанной на понятии длины пути перемешивания) на трехмерные поля как осредненных, так и пульсационных скоростей [4]. Решение этих уравнений позволило получить следующую формулу для нахождения коэффициента:

$$\alpha^{2} = \pm \left\{ \exp\left(-2\int \Phi_{1}(\eta) d\eta \left[\int \Phi_{2}(\eta) \exp\left(2\int \Phi_{1}(\eta) d\eta\right) d\eta + C\right] \right\}^{0,5}, \quad (8)$$

где
$$\Phi_{1}(\eta) = \frac{2}{\eta+b} \left\{ \frac{n(n+b)^{2} \left[(n-1)(1-\eta^{2})^{2}+2\eta^{2}(\eta-3)\right]}{\eta(1+\eta^{2})\left[n(\eta+b)(1-\eta^{2})-\eta(1+\eta^{2})\right]} + 1 \right\};$$

$$\left[(2\eta)^{2n} - 0,5(\eta+b)(1+\eta^{2})^{2n} (dP/d\eta) \right] \left[n(\eta+b)(1-\eta^{2}) + \frac{\eta(1+\eta^{2})\left[(1+\eta^{2})^{2}\eta^{2}(1-n)\right]}{\eta(1+\eta^{2})\left[(1+\eta^{2})^{2}\eta^{2}(1-n)\right]};$$

$$P = P/0.5
ho w_{\varphi m}^2$$
 — безразмерное избыточное статистическое давление, определяемое в работе по опытным данным;
 C — постоянная величина.

 $\frac{2^{2n+1}(\eta+b)[n(\eta+b)(1-\eta^2)-\eta(1+\eta^2)]^3}{2^{2n+1}(\eta+b)[n(\eta+b)(1-\eta^2)-\eta(1+\eta^2)]^3}$

Знак перед выражением (8) совпадает со знаком $r[\partial(w_{o}/r)\partial r]$.

Значения α^2 были рассчитаны по уравнению (8) на ЭВМ в стречающемся в практике диапазоне изменения *n*, *b*, η . Затем полученные данные аппроксимированы следующим уравнением, которое рекомендуется в качестве расчетного:

Рис. 2. Распределение касательного турбулентного напряжения трения при b = 2,0 и различных n.

Рис. 3. Распределение касагельного турбулентного напряжения трения при n = 1,5 и различных b.

$$\alpha_{\omega}^{2} = \pm \frac{0.01 (b + \eta_{jm})^{2} (\eta_{\Gamma m} - \eta) (1 + \eta)^{2}}{(\eta_{\Gamma m} - \eta_{jm})(b + \eta)^{2} [n (\eta + b)(1 - \eta^{2}) - \eta (1 + \eta^{2})]^{2}}.$$
 (9)

Здесь
$$\eta_{jm} = (r_{jm} - r_b)/(r_{\varphi m} - r_b);$$

 $\eta_{\Gamma m} = (r_{\Gamma m} - r_b)/(r_{\varphi m} - r_b);$
 $r_{jm}, r_{\Gamma m} -$ соответственно безразмерные и размерные ра-
диусы положения максимумов центростреми-
тельного ускорения и циркуляции тангенциаль-
ной скорости [3].

Найденные значения α^2 позволяют значительно повысить точность расчетных распределений давления, радиальной и аксиальной компоненты скорости потока [3], а также в первом приближении рассчитать распределения напряжений турбулентного трения.

На рис. 2 и 3 в качестве иллюстрации приведены распределения т_w при различных сочетаниях *n* и *b*.

ЛИТЕРАТУРА

[1]. Кинни О. Универсальное подобие скоростей в полностью турбулентных вращающихся потоках.— В ки.: Тр. америк. о-ва инж.-мех./ Русск. пер. М., 1967, т. 34, сер. Е, № 2. [2]. Рочино, Лэвэн. Аналитическое исследование несжимаемого турбулентного закрученного потока в неподвижных трубках.— В кн.: Тр. америк. о-ва инж.-мех. М., 1969, т. 36, сер. Е, № 2. [3]. Сабуров Э. Н. Аэродинамика и конвективный теплообмен в циклонных нагревательных устройствах.— Л.: Изд-во Ленингр. ун-та, 1982.— 240 с. [4]. Современное состояние гидродинамики вязкой несжимаемой жидкости/ Под ред. Гольдштейна.— М.: ИЛ, 1948, т. 1.— 378 с. [5]. У стименко В. П. Процессы турбулентного переноса во вращающихся течениях.— Алма-Ата: Наука КазССР, 1977.— 228 с. [6]. Щукин В. К., Халатов А. А. Теплообмен, массообмен и гидродинамика закрученных потоков в осесимметричных каналах.— М.: Машиностроение, 1982.— 200 с.

Поступила 5 апреля 1985 г.